

FP7-ICT-2011-8

MARKOS

The MARKet for Open Source

An Intelligent Virtual Open Source Marketplace

WP4 – Code Analyser

D4.1.1a– Requirements for information

extraction from source code v1

Due date: 31.3.2013 Delivery Date: 16.4.2013

Author: Gabriele Bavota, Massimiliano Di Penta, Unisannio

Partners contributed:

Dissemination level: CO* Nature of the Deliverable: Report

Internal Reviewers: Pawel Kedziora, PSNC (27.03.2013), Davide Galletti, GEEKNET

(23.03.2013), Maria Saguino, ATOS (26.03.2013)

Davide Galletti, GEEKNET (29.03.2013) – Second Review

* CO (Confidential, only for members of the Consortium, including the Commission Services)

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 2 of 26

VERSIONING

VERSION DATE NAME, ORGANIZATION

0.1 20/02/2013 GABRIELE BAVOTA AND MASSIMILIANO DI PENTA,UNISANNIO

0.2 06/04/2013 GABRIELE BAVOTA AND MASSIMILIANO DI PENTA,UNISANNIO

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 3 of 26

Executive Summary

The general goal for the Code Analyser is to extract from software repositories information

about software artefacts to be used for supporting their retrieval in the context of a code

search activity. This document describes the requirements for the source code analysis

performed by the Code Analyser.

The information and views set out in this publication are those of the author(s) and do not

necessarily reflect the official opinion of the European Communities. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held responsible

for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the MARKOS Partners

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 4 of 26

D4.1.1a– Requirements for information

extraction from source code v1

Table of Contents

0.2 .. 2
06/04/2013 ... 2
GABRIELE BAVOTA AND MASSIMILIANO DI PENTA,UNISANNIO .. 2

1. INTRODUCTION ... 5

1.1. DOCUMENT ORGANIZATION ... 5

2. FEATURES OF THE CODE ANALYSER AND FUNCTIONAL REQUIREMENTS 6

2.1. DOWNLOAD DATA RELATED TO PROJECTS IDENTIFIED BY THE CRAWLER .. 6
2.1.1. Requirements and user stories derived from this feature .. 6

2.2. CODE ANALYSIS ... 6
2.2.1. Requirements and user stories derived from this feature .. 8

2.3. LICENSING STATEMENTS ANALYSIS AND CLASSIFICATION ... 8
2.3.1. Requirements in form of user stories derived from this feature ... 8

2.4. WEB-SERVICES OFFERED BY THE CODE ANALYSER ... 8

3. DATA DICTIONARY OF THE CODE ANALYSER ... 10

4. NON-FUNCTIONAL REQUIREMENTS .. 23

5. CODE ANALYSER CONTROL FLOW .. 24

5.1. CODE DOWNLOAD .. 24
5.2. CODE CONVERSION .. 24
5.3. FACT EXTRACTION ... 24
5.4. INFORMATION STORING ... 25

6. CONCLUSION.. 26

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 5 of 26

1. INTRODUCTION

This document describes the requirements for the source code analysis performed by the

Code Analyser. The general goal for the Code Analyser is to extract from software

repositories information about software artefacts to be used for supporting their retrieval

in the context of a code search activity. The code search can be performed at different

levels of granularity, e.g., entire packages/libraries able to fulfil a given piece of

functionality, a source code file/class, but also a small source code snippet/fragment that

can be relevant for a specific task, e.g. a snippet useful to implement a particular sorting

algorithm. Moreover, the Code Analyser must extract and process the source code

licensing information that will be used in WP3 to determine whether the discovered

artefact is compliant from a legal point of view. In addition, it is necessary to extract

dependencies, to identify requirements necessary to be fulfilled when one wants to use a

discovered code artefact, and to determine whether the dependencies would create legal

issues, e.g., because of interconnection with artefacts that are not compatible-from a

licensing point of view-with the system.

This first version of the Code Analyser’s requirements starts to identify the facts to

extract from source code in order to support the aforementioned functionalities.

1.1. Document organization

The document is organized in five sections including this introduction. Section 2

summarizes the main features that must be provided by the Code Analyser together with

the functional requirements (in form of user stories) related to them. Section 3 presents

the data dictionary showing the information that the Code Analyser will extract from the

analysed project releases while Section 4 describe the non-functional requirements of

the Code Analyser. Section 5 briefly describes the control flow of the Code Analyser

when performing code analysis, while Section 6 concludes the document.

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 6 of 26

2. FEATURES OF THE CODE ANALYSER AND FUNCTIONAL REQUIREMENTS

In this section we describe the main features provided by the Code Analyser. Each feature is

overviewed in a dedicated subsection together with the requirements derived by it.

2.1. Download data related to projects identified by the Crawler

The Code Analyser exposes a web service to allow the Crawler to notify it when new projects

or new project releases are available. For each new release available, the Code Analyser

expects from the Crawler the following info:

1. The name of the project (e.g., Apache Tomcat)

2. The name of the release (e.g., 6.0)

3. The release’s date (e.g., 25/10/2011) [if available]

4. A list of possible repositories available to download the source code of the new release

to analyse.

This info will be passed from the Crawler to the Code Analyser through an HTTP

request.Then, the Code Analyser downloads the source code of the new project releases and

starts the source code analysis.

2.1.1. Requirements and user stories derived from this feature

a) The Code Analyser must be able to download source code from a given software

repository, so that it can start the code analysis.

b) theCode Analyser must be able to decompress an archive containing source code, so

that it can start the code analysis. The supported formats must be at least:

a. .tar

b. .gz

c. .tar.gz

d. .zip

e. .jar.

Other archive formats will be added in the future (e.g., .rar, .war).

2.2. Code analysis

The Code Analyser analyses the downloaded source code through the following steps:

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 7 of 26

1. Firstly, it converts the source code of each new release in srcML
1
 format, an XML-

like representation of source code.

2. Then, a parser based on Java DOM
2
 is used to extract structural information about the

source code. During this stage all the info reported in Section 3 of this document are

extracted and stored in an internal database (described in Section 3), except: info

related to the licenses, and dependencies between code components.

3. Dependencies between code components are extracted in the third step of code

analysis. There are two possible kinds of dependencies existing between code entities:

o Dependencies between code entities belonging to the same project (e.g., a

method m1 implemented in class C1 of Apache Tomcat calls a method m2

implemented in class C2 of Apache Tomcat). From now on we refer to these

dependencies as internal dependencies.

o Dependencies between code entities belonging to different projects (a method

m1 implemented in class C1 of Apache Tomcat calls a method m3

implemented in class C3 of an imported library). From now on we refer to

these dependencies as external dependencies.

The analysis of the internal dependencies is performed just for the new (just

analysed) releases. Examples of dependencies extracted include calls between

methods, inheritance and extend relationships, import/include relationships.

Concerning the external dependencies, the Code Analyser will periodically look for

them in the entire database, trying to improve the stored info. For instance, there

could be dependencies stored in the database for which we know the source entity

without having identified the target entity. As example, it is possible that during the

analysis of a project a call from a method m1 to a method m2 imported from an

external library is identified. However, if the source code of the external library is

not available, it will not be possible to identify the project to which m2 belongs. To

solve this problem the Browsing&Querying component will expose an interface

allowing the Code Analyser to require the provenience of a code element (at least at

source file level). If also the Browsing&Querying component is not able to retrieve

this information, the dependency will be marked by the Code Analyser as “not

solved” and will be analysed in a future stage when more projects are available in the

semantic store.

Just after the analysis of the internal dependencies, the Code Analyser starts performing the

licensing statement analysis and classification (see Section 3.3).

1
http://www.sdml.info/projects/srcml/

2
http://docs.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/package-summary.html

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 8 of 26

2.2.1. Requirements and user stories derived from this feature

c) The Code Analyser must be able to automatically convert the source code in srcML

format, so that fact extraction from source code is possible.

d) The Code Analyser must support as programming languages at least:

a. Java

In future other programming languages (starting from C and C++) will be supported.

e) The Code Analyser must be able to extract information about source code reported in

the data dictionary depicted in Section 3.

2.3. Licensing statements analysis and classification

The license analysis is performed on each new release processed by the Code Analyser. In

particular, each source code file is parsed by Ninka
3
, a lightweight license identification tool.

The license’s info extracted from each source code file include: the licensing statement

reported in the file, its contributors, the licenses specified in it, and the covered copyright

years.

2.3.1. Requirements in form of user stories derived from this feature

f) The Code Analyser must be able to extract from source code all the information

related to licenses reported in the data model presented in Section 3 of this document.

2.4. Web-services offered by the Code Analyser

All the above described features will be possible thanks to the following RESTful web-

services exposed by the Code Analyser:

1. analyseNewProjectReleases(List<Projects>infoAboutNewReleases) [exposed to the

Crawler]. This service will allow the Crawler to notify the Code Analyser about new

project releases to analyse.

2. analyseAprojectProvidedByUser(URL srcArchiveURL) [exposed to the Front-end]. A

Markos’ user can ask Markos to analyse a project not yet indexed by the system. In

this case the front end can pass to the Code Analyser a URL pointing to an archive

containing the source code to analyse.

3
http://ninka.turingmachine.org/

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 9 of 26

3. getProjects(Date lastUpdate) [exposed to the Repository]. The semantic store can

invoke this service time by time to receive the new available data from the Code

Analyser.

4. notifyMedatataChange(List<Projects> projects) [exposed to the Crawler]. This service

will allow the Crawler to notify the Code Analyser about changes in the metadata of

already indexed projects.

5. notify(intbatchId) [exposed to the Crawler]. This service will allow the Crawler to

notify the Code Analyser when new data about a specific project requested by the

Code Analyser are ready.

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 10 of 26

3. DATA DICTIONARY OF THE CODE ANALYSER

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 11 of 26

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 12 of 26

Figure 1: Code Analyser data dictionary

In this Section we describe the Code Analyser data dictionary reported in Figure 1. Note that

the information stored in the Code Analyser database at this stage of the project (i.e., first

sprint) is mainly designed for Object-Oriented programming languages. In the version v2 of

this document the complete data dictionary will be presented.

project

Stores generic information about a project

Attribute Type Description Example

name varchar The name of the

project

Sweet Home 3D

id int Primary Key 1

programming_language

Represents a programming language that could be used in different projects

Attribute Type Description Example

name varchar The name of the

programming

language

Java

Id Int Primary Key 1

project_language

Stores the programming languages used in a project

Attribute Type Description Example

project_id int The id of the project 5

language_id int The id of the

programming

language

1

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 13 of 26

source_code_file

Represents a file of a project release containing source code

Attribute Type Description Example

path varchar The path of the code

element

/src/ManagerUser.java

language_id int The programming

language used in the

source code file

Java

release_id int The project release to

which the source

code file belong to

4

container_id int The container in

which the source

code file is placed

6

id int Primary Key 1

releases

Stores the different releases analysed by Markos

Attribute Type Description Example

id int Primary Key 3

project_id int The project to which

the release belongs

8

release_date Date The release date 10-10-2012

release_name varchar The name of the

release

2.0.1

url varchar The url from where

the source code for

this release has been

downloaded

http://svn.argouml.it/

Argo_2.0.0.tar.gz

already_analyzed int 1 if source code

analysis has been

performed for this

release, 0 otherwise

0

date_added Date The date in which

the Code Analyser

has added this

project in the

21-10-2012

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 14 of 26

database.

container

A container (e.g., a Package) contained in a project release

Attribute Type Description Example

id int Primary Key 3

name varchar The container’s name org.argouml

release_id int The id of the release

to which the

container belongs

7

no_source_code_file

Represents a non-source code file contained in a project release

Attribute Type Description Example

id int Primary Key 3

path varchar The path of the file /src/config/conf.txt

release_id int The id of the release

to which the file

belong

6

text varchar The textual content

of the file

“This file contains the

configuration parameters

of the system..”

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 15 of 26

licensing_statement

Represents a licensing statement contained in a file

Attribute Type Description Example

id int Primary Key 3

text varchar The licensing

statement

This class is released

under the license…

source_code_file_id int The id of the file in

which the licensing

statement is

contained

7

licensing_statement_license

Stores the licenses contained in a licensing statement

Attribute Type Description Example

license_id int The id of the license 3

licensing_statement_id int The id of the

licensing statement

5

licensing_statement_copyright_year

Stores the copyright years contained in a licensing statement

Attribute Type Description Example

copyright_year int The copyright year 2001

licensing_statement_id int The id of the license 3

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 16 of 26

licensing_statement_contributor

Stores the contributors specified in a licensing statement

Attribute Type Description Example

contributor_id int The id of the

contributor

3

licensing_statement_id int The id of the license 8

contributor

Represents a contributor of one or more licensing statements

Attribute Type Description Example

id int Primary Key 3

name varchar The contributor name Eclipse Foundation

copyright_year

Represents a copyright year

Attribute Type Description Example

year int Primary Key 1998

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 17 of 26

class

Represents a class contained in a source code file

Attribute Type Description Example

id int Primary Key 3

language_id int The id of the

programming

language used

Java

name varchar The name of the

class

ManagerUser

release_id int The id of the release

to which the class

belong

6

source_code_file_id int The id of the source

code file in which

the class is defined

8

package varchar The name of the

package containing

the class

userManagement.db

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 18 of 26

behavior

Can represent a method or a function

Attribute Type Description Example

id int The primary key 5

ELOC int The lines of code of

the method, excluding

comments and blank

lines

78

code varchar The code of the

method. Will not be

stored in the final

version of Markos, is

just used to test the

Analyser

public static…

fingerprint varchar Is composed by a set

of metrics measured

for the method

4170942183290321

is_constructor Boolean true if the method is a

constructor, false

otherwise

false

name varchar The name of the

method

getUser

return_class_id int The id of the returned

class (if the returned

class is a class of the

system, NULL

otherwise)

5

return_type varchar A string reporting the

return type of the

method. It is useful if

return_class_id is

NULL

String

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 19 of 26

behavior_class

Stores the methods contained in a class

Attribute Type Description Example

behaviour_id int The id of the method 3

class_id int The id of the class 8

behavior_exceptions

Stores the exceptions thrown by a method

Attribute Type Description Example

behaviour_id int The id of the method 3

exception_id int The id of the class

representing the

exception

14

behavior_calls

Stores the behaviors invoked by other behaviors

Attribute Type Description Example

behaviour_id int The id of the method 9

invoked_behaviour_id int The id of the invoked

behabiour

11

extends

Stores extend relationships between classes of a release

Attribute Type Description Example

superclass_id int The id of superclass 5

subclass_id int The id of the subclass 12

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 20 of 26

implements

Stores implement relationships between classes of a release

Attribute Type Description Example

interface_id int The id of the

interface

1

class_id int The id of the class

implementing the

interface

90

parameter

Represents a parameter used in a Method or in a Function

Attribute Type Description Example

name varchar The name of the

parameter

firstName

behavior_id int The id of the behavior

to which the

parameter belongs

6

code varchar Just used to test the

analyzer. Will not be

part of the final

Markos project.

code..

type_class_id int The id of the class

representing the

parameter type (if it is

a class of the system,

NULL otherwise)

7

type varchar The type of the

parameter. Useful if

type_class_id is

NULL.

String

p_order int The position of the

parameter in the

behaviour’s parameter

list. Starts from 0.

0

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 21 of 26

variable

Represents a variable. Could be both a local variable of a method or an instance variable

Attribute Type Description Example

id int Primary Key 3

name varchar The name of the

variable

user

type_class_id The id of the class

representing the

variable type (if it is a

class of the system,

NULL otherwise)

7

type varchar The type of the

variable. Useful if

type_class_id is

NULL.

String

specifier

Stores the specifiers (e.g., public, static)

Attribute Type Description Example

id int Primary Key 3

name varchar The name of the

specifier

public

behaviour_specifiers

Stores the specifiers associated to a behaviour

Attribute Type Description Example

behaviour_id int The id of the method 9

specifier_id int The id of the

specifier

8

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 22 of 26

variable_specifiers

Stores the specifiers associated to a variable

Attribute Type Description Example

variable_id int The id of the variable 9

specifier_id int The id of the

specifier

8

behaviour_local_variable

Stores the local variables defined in a behaviour

Attribute Type Description Example

local_variable_id int The id of the variable 5

behaviour_id int The id of the

behaviour

3

behaviour_global_variable

Stores the global variables used by a behaviour

Attribute Type Description Example

variable_id int The id of the variable 1

behaviour_id int The id of the

behaviour

4

instance_variable_class

Stores the global variables defined in a class

Attribute Type Description Example

variable_id int The id of the variable 1

class_id int The id of the class 4

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 23 of 26

4. NON-FUNCTIONAL REQUIREMENTS

The Code Analyser is a heavy computational process. Its main non-functional requirement is

related to the executions time. To date, we do not have reliable estimations of the Code

Analyser execution time. However, we are confident that we should be able to satisfy at least

the following performance requirement:

a) No more than 1 minute needed to analyse 30 Kilo Lines Of Code (KLOC).

A second non-functional requirement is related to the possibility of easily integrating in

Markos new programming languages. We plan to limit the implementation of a new

programming language to the implementation of a new parser, without impacting (i) the data

dictionary and (ii) the classes managing the persistent information stored by the Code

Analyser.

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 24 of 26

5. CODE ANALYSER CONTROL FLOW

Figure 2: Code Analyser control flow

Figure 2 reports the control flow of the code analyser component when performing code

analysis. In the following subsections we briefly discuss each of the performed actions.

5.1. Code Download

The Code Downloader is in charge of download new project releases indicated by the Crawler

through the “analyseNewProjectReleases” service. The downloaded code is stored in a

temporary folder. Once the code is ready to be parsed, the Code Converter component is

notified.

5.2. Code Conversion

The Code Converter converts the downloaded project releases to be parsed in and XML-like

format. When the Code Converter converts a release it (i) notifies the Fact Extractor that a

new project is ready to be parsed and (ii) deletes the source code of the converted release.

5.3. Fact Extraction

The Fact Extractor extracts all info reported in the data model presented in Section 3,

including those related to the license statements.

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 25 of 26

5.4. Information Storing

The Storage Management manages all the information in the Code Analyser database. It

provides a set of interfaces (not exposed by the Code Analyser to other components) allowing

to insert/delete/update/query all the info stored in the Code Analyser database. The

information is mainly inserted/deleted/updated by the Code Parser and the License Parser,

while the Exposed Services component is the one mainly exploiting the querying interfaces.

FP7-<317743> < MARKOS > D4.1.1a – Requirements for information extraction from source code v1

WP4 – Software modelling and analysis markos Consortium Page 26 of 26

6. CONCLUSION

This document overviews the requirements behind the source code information extraction

performed by the Code Analyser. In the second version of this document scheduled for the

12
th

 month we will provide the final version of the Code Analyser data dictionary together

with more reliable information about the performance requirements that the Code Analyser is

able to satisfy.

