

FP7-ICT-2011-8

MARKOS

The MARKet for Open Source

An Intelligent Virtual Open Source Marketplace

WP 2 - Upper Model and Architecture

D2.1.1a ï Specification of the MARKOS

Architecture and Service APIs (initial)

Due date: 30 April 2013 Delivery Date: 30 April 2013

Author : Antonio De Nigro (ENG) Partners contributed: Fraunhofer, ATOS,

ENG, PSNC, Unisannio, SF

Dissemination level: PU* Nature of the Deliverable: Report

Internal Reviewers: Ilknur Chulani (ATOS), Gabriele Bavota (Unisannio)

* PU (Public)

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 2 of 79

VERSIONING

VERSION DATE NAME, ORGANIZATION

0.1 14/01/2013 ANTONIO DE NIGRO (ENG) ï DRAFT OF THE DELIVERA BLE STRUCTURE

0.2 04/03/2013 ANTONIO DE NIGRO (ENG) ï FIRST DRAFT OF THE DE LIVERABLE . ALL CONTRIBUTION

FROM PARTNERS INTEGR ATED .

0.3 05/03/2013 SILKE CUNO (FRAUNHOFER) ï UPDATE TO NEW DELIVER ABLE TEMPLATE

0.4 12/04/2013 ANTONIO DE NIGRO (ENG) ï FIRST RELEASE FOR INT ERNAL REVIEW

0.5 21/04/2013 ILKNUR CHULANI (ATOS), GABRIELE BAVOTA (UNISANNIO) ï INTERNAL REVIEW

COMMENTS & SUGGESTIONS

0.6 23/04/2013 ANTONIO DE NIGRO (ENG) ï INTERNAL RELEASE COMM ENTS & SUGGESTIONS

ADDRESSED. SECOND RELEASE FOR INTERNAL REVIEW

0.7 28/04/2013 ILKNUR CHULANI (ATOS), KLAUS-PETER ECKERT (FRAUNHOFER) ï INTERNAL REVIEW

FINAL COMMENTS & SUGGESTIONS

1.0 30/04/2013 ANTONIO DE NIGRO (ENG) ï OFFICIAL RELEASE . FINAL COMMENTS & SUGGESTIONS

ADDRESSED

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 3 of 79

Executive Summary:

The primary goal of the MARKOS system is to provide an integrated view on the Open

Source projects available on the web, focusing on functional, structural and license

aspects of the software code released by the projects. MARKOS wants to offer

developers and analysts a solution for choosing the Open Source components more

suitable to their needs, to learn how to integrate or extend them, and in general aims to

foster easy adoption of Open Source Software.

The top-level architecture describes how the projects are crawled by the existing forges

and meta-forges, and how they are processed by the system to extract meaningful

information to present to MARKOS (human) users and to other external software tools.

The design activity has been driven by the user requirements described in D1.1.1 and

focuses on the functionalities to be implemented during the first period of the project;

therefore it will be improved in the next months.

The architecture provides an overall view of the main functional components to

implement the MARKOS services, in terms of offered and required interfaces and

interactions between these components. Moreover, it has been the means to clarify the

work assignments to separated design and implementation teams inside the MARKOS

project, by defining the features to be implemented by each team.

Disclaimer: The information and views set out in this publication are those of the author(s)

and do not necessarily reflect the official opinion of the European Communities. Neither the

European Union institutions and bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the MARKOS Partners.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 4 of 79

Specification of the MARKOS Architecture

and service APIs (initial)

Table of Contents

1. INTRODUCTION ... 8

2. ARCHITECTURE DEFI NITION DRIVERS .. 11

3. TOP LEVEL ARCHITE CTURE .. 13

4. INFORMATION MODEL ... 19

5. MARKOS COMPONENTS DESCRIPTION... 23

5.1. CRAWLER COMPONENT .. 23
5.1.1. Provided interfaces .. 24
5.1.2. Required interfaces .. 24

5.2. CODE ANALYSER COMPONENT ... 24
5.2.1. Provided interfaces .. 25
5.2.2. Required interfaces .. 25

5.3. LICENSE ASSISTANT COMPONENT .. 26
5.3.1. Provided interfaces .. 27
5.3.2. Required interfaces .. 28

5.4. REPOSITORY COMPONENT .. 28
5.4.1. Provided interfaces .. 29
5.4.2. Required interfaces .. 30

5.5. BROWSING&QUERYING COMPONENT ... 31
5.5.1. Provided interfaces .. 31
5.5.2. Required interfaces .. 32

5.6. FRONTEND COMPONENT ... 33
5.6.1. Provided interfaces .. 33
5.6.2. Required interfaces .. 33

5.7. LINKED DATA ACCESS POINT .. 34
5.7.1. Provided interfaces .. 35
5.7.2. Required interfaces .. 35

5.8. ANNOTATION AND COMMUNICATION COMPONENT .. 35

6. COMPONENT INTERAC TIONS... 38

6.1. CRAWLING AND CODE ANALYSIS .. 38
6.2. LICENSE ANALYSIS AND STORING ... 39
6.3. SEARCHING AND VISUALIZATION ... 40

7. CONCLUSIONS AND NEXT STEPS ... 42

REFERENCES .. 43

APPENDIX A: COMPONEN T INTERFACES IN DETA ILS ... 44

CRAWLER COMPONENT ... 44
ICrawler interface ... 44

CODE ANALYSER COMPONENT .. 46
ICodeAnalyser ... 46

LICENSE ASSISTANT COMPONENT ... 49
IRNotification interface ... 49
ILicenseAssistantWebApp .. 49

REPOSITORY COMPONENT ... 50

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 5 of 79

IRepositoryStore .. 50
IRepositoryStoreWS ... 51

BROWSING&QUERYING COMPONENT ... 53
Interface ISearching .. 53
Interface IBrowsing ... 55

FRONTEND COMPONENT .. 57
IFrontend ... 57

APPENDIX B: SEQUENCE DIAGRAMS IN DETAILS ... 59

CRAWLING .. 59
Entity Model .. 60

CODE ANALYSIS ... 61
UPDATE SEMANTIC STORE ... 64
CHECK LICENSES .. 65
QUERYING BY METADATA ... 66
QUERYING BY INTERFACES ... 68
ENTITY VISUALIZATION AND BROWSING ... 70
ANALYSE LICENSES .. 72
METADATA CHANGE NOTIFICATION .. 73

Entity Model .. 74
DOWNSTREAM NOTIFICATION ... 75

Entity Model .. 76
CRAWLER CONFIGURATION .. 77
USER ANNOTATION ... 77

APPENDIX C: USER REQUIREMENTS ï SEQUENCE DIAGRAM MAP PING 78

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 6 of 79

Abbreviations

FP7 Seventh Framework Programme

IPR Intellectual Property Rights

WP Work Package

OS Open Source

OSS Open Source Software

DBMS Data Base Management System

DOAP Description Of A Project

RDF Resource Description Framework

List of figures

Figure 1 ï Functional MARKOS architecture view ... 13

Figure 2 ï Deployment diagram of the MARKOS system .. 16

Figure 3 ï MARKOS information model .. 20

Figure 4 ï Crawler component ... 23

Figure 5 ï Code Analyser component .. 24

Figure 6 ï License assistant components ... 27

Figure 7 ï Repository components ... 28

Figure 8 ï Browsing&Querying component .. 31

Figure 9 ï Frontend component ... 33

Figure 10 ï Linked data access point component .. 35

Figure 11 ï Annotations component .. 36

Figure 12 ï Crawling and Code Analysis .. 38

Figure 13 ï License analysis and storing of results in the semantic store 40

Figure 14 ï Searching of software entities and visualization of their properties 41

Figure 15 ï Crawling sequence diagram .. 59

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 7 of 79

Figure 16 ï Code analysis sequence diagram .. 61

Figure 17 ï Update semantic store sequence diagram ... 64

Figure 18 ï Check licenses sequence diagram ... 65

Figure 19 ï Querying by metadata sequence diagram ... 66

Figure 20 ï Querying by interface sequence diagram .. 68

Figure 21 ï Entity visualization and browsing sequence diagram ... 70

Figure 22 ï Analyse licenses sequence diagram .. 72

Figure 23 ï Metadata change notification sequence diagram .. 73

Figure 24 ï Downstream notification sequence diagram ... 75

Figure 25 ï Crawler configuration sequence diagram ... 77

List of tables

Table 1 ï Hardware and software requirements of MARKOS components 18

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 8 of 79

1. INTRODUCTION

The primary goal of the MARKOS project is to realize a prototype of a software system

ï the MARKOS platform ï providing an integrated view on the Open Source projects

available on the web, focusing on functional, structural and license aspects of the

software code released by the projects. MARKOS wants to offer to developers and

analysts a solution for choosing the Open Source components more suitable to their

needs, to learn how to integrate or extend them and, in general aims to foster easy

adoption of Open Source Software.

The present document reports the top-level architecture of the MARKOS platform. The

main functional components implementing the MARKOS services are identified and

their functionalities are described in terms of offered and required interfaces and

interactions between these components. In particular, it is described how the software

code of the OS projects is (i) retrieved from the forges, (ii) analysed, (iii) stored and (iv)

consumed by end-users.

The architectural choices made at design time are based on the user requirements

reported in the deliverable D1.1.1a [2], which have driven the definitions of component

functionalities and their interactions.

According to the development approach
1
 adopted in the whole project, the design of the

MARKOS platform is defined using an incremental approach. Therefore, the main goal

of the reported top level architecture is to describe a limited and well defined set of

interfaces and interactions to satisfy the user requirements scheduled for the first period

of the project, i.e. for the sprint 1
1
. Actually, the described interactions and interfaces

include also functionalities that will be implemented in successive sprints, but the

definition of these functionalities will be improved sprint by sprint. It cannot be excluded

that during the project some changes could be applied also to the architectural choices

done for sprint 1. A comprehensive design of the MARKOS platform will be described

in the next release of this deliverable.

The approach adopted to describe the MARKOS top-level architecture is based on the

existing literature [4][5][6] and on previous experiences in other EU projects, such as

SLA@SOI [8] and NEXOF-RA [7]. The architecture reported here has the following

objectives [5]:

- It serves as the blueprint both for the system and the project developing it.

- It defines the work assignments, in terms of component functionalities, that must be

carried out by separate design and implementation teams.

1
 The development approach is also described in deliverable D1.1.1a [2]

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 9 of 79

- It is a vehicle for early analysis to make sure that the design approach will yield to

an acceptable system.

- It is the artefact that holds the key to post-deployment system understanding or

mining
2
 efforts.

The UML notations are used to describe the architecture. Specifically, the contents of the

deliverable are arranged as follows:

- The assumptions driving the definition of the top-level architecture are reported in

section 2.

- The context of the MARKOS system is described in section 3, through a high level

conceptual view depicting the functional components and the flow of meaningful

data characterizing OS projects and software. The meaningful data are the ones

gathered from the forges on the web that fully qualifies the analysed projects and

describes their code structure and licenses information, managed by the MARKOS

system and consumed by the end-users.

- A comprehensive view of the components and their deployment schema to locate

them on physical or virtual machines is described by means of a deployment

diagram, reported in section 3. It shows the connections between components and

the communication protocols used.

- The data exchanged by the components are described by means of class diagrams,

reported in section 4. The goal is to provide an UML representation of some piece

of information that will be more deeply specified by the MARKOS ontology
3
.

- The scope of each single component is described by means of component diagrams,

reported in section 5. Each component is described in terms of its required and

provided interfaces, and it is considered a black-box, as the internal design of each

component is documented by other deliverables of the project.

2
 Software architecture mining is the practice to check the adherence of the implementation of a software system

to its design. Designers needs to check that an implementation have been faithful to design;

developers/maintainers need to be able to understand existing source code. Architectural mining closes both

of these gaps by pulling out the relationships within an implementation, and inferring the existence of high

level abstractions corresponding to design elements [15].

3
 The MARKOS ontology is described in the deliverable D2.2.1a óMARKOS Ontology (initial)ô.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 10 of 79

- The interactions between the defined components, needed to implement the

MARKOS features, are described by means of sequence diagrams, reported in

section 6.

In the appendixes of the document are reported architectural details to describe the

invocation mechanisms of the offered functionalities, the communication protocol, and

the expected inputs and output for each provided operation (Appendix A: Component

interfaces in details). Detailed sequence diagrams are also provided to better qualify the

functionalities in terms of interactions between components (Appendix B: sequence

diagrams in details). Finally, the mapping between the user requirements and the

sequence diagrams provides a rationale for the applied choices (Appendix C: User

Requirements ï Sequence diagram mapping).

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 11 of 79

2. ARCHITECTURE DEFINITI ON DRIVERS

The main goal of the top level architecture of MARKOS is to design a limited and well-

defined set of component functionalities satisfying the user requirements scheduled for

the first period of the project, i.e. for the sprint 1
1
. Besides sprint 1 functionalities, further

functionalities have been defined when the following two conditions are met: 1) they are

useful to provide at least a high level view of how the objectives of the MARKOS

project will be met and 2) they implement stable user requirements already scheduled for

sprints 2 and 3, i.e. scheduled for the first year of the project.

The architecture described in this document is an óin-progressô work. It will be extended

by designing new features according to the consolidation of the user requirements, which

will occur every sprint with a higher expected incidence for the early sprints. The

adopted methodology and techniques guarantee a good level of confidence in the

architectural choices made so far; however, the choices made in the current version of

the architecture can change as a consequence of changing user requirements. It is due to

the adoption of an incremental development approach [2] envisioning the continuous

evolution of the produced artefacts.

The definition of the MARKOS architecture is based on the principles of goodness

defined in the scope of NEXOF-RA project, which defines a quality model for the

architectural design of software systems [1]. According to the quality attributes defined

there, when multiple architectural alternatives were identified at design time, the solution

considered most efficient and, in order of priority, the most easy
4
 to realize has been

adopted. The most efficient solution for each component is the one that minimizes the

time requested to perform its tasks, the amount of disk space requested to store internal

data enabling its normal operation, and the overhead of communication with other

components to exchange requested and provided data. When the simultaneous

minimization of these three parameters has been not possible because of conflicting

conditions, óthe bestô trade-off among them has been chosen. The criteria to define the

best trade-off assigns the highest priority to the minimization of the execution time

requested to perform the tasks, secondly to the minimization of the overhead of

communication with other components, and finally to the minimization of the amount of

disk space required.

Accordingly, when specific MARKOS components presented quite high hardware

requirements, like CPU throughput or amount of requested memory, it has been decided

to run it on a dedicated server to minimize the execution time, even if such choice do not

optimize the efficiency of the communication between components. When possible,

4
 The NEXOF-RA quality model defines the ease of realization, also said buildability, as ñthe difficulty of

constructing the systemò.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 12 of 79

more components run on the same server and in the same virtual machine so that most

efficient communication protocols (data exchanges) can be used.

Other quality attributes have been taken in consideration, like the modifiability of the

system, which is one of the most important quality attributes considered during the

design. Indeed, the adopted incremental approach implies continuous changes to the

architecture and a highly modifiable system is strongly recommended. According to the

adopted quality model, the modifiability is a complex attribute measured in terms of

extensibility of capabilities, i.e. the ability to add new functionalities with less impact on

the overall system, the deletion of unwanted capabilities, the portability, i.e. the ability

of the system to run under different executing environment and the restructuring, i.e. the

ability to support architectural configuration changes, such as rationalizing system

services, modularising, optimising or creating reusable components.

The reusability of some of the main components is a highly desired aspect for

MARKOS, even if it is not mandatory. Thus, one secondary goal of the MARKOS

architecture is to reduce as much as possible the coupling between components, while

keeping each component as much as cohesive possible. The reusability of the

components is an aspect that will be further investigated during the next steps of the

project.

The security concerns of the MARKOS system have been not investigated yet. The

topics related to the authentication and authorizations of end-users and, in case, data

encryption will be investigated during the second phase of the project, when the non-

functional requirements of the system will be clarified.

The possible constraints of the infrastructure that has to host the MARKOS trial

platform
5
 have been tentatively evaluated in terms of the number of required servers and,

for each of them, the amount of the required computational resources and disk space.

Moreover, the technologies needed for the correct operation of the components have

been considered; they are reported in Table 1. The objective of such investigation is to

verify the feasibility of the demonstrator and to gather any technical requirements from

the infrastructure provider
6
. The result of such investigation leads to a gross grained

estimation of the hardware requirements to execute MARKOS components, provided by

the component owners and submitted to the infrastructure provider for an acceptance

validation. The hardware requirements are reported in section 3.

5
 The MARKOS trial platform is the demonstrator that will be developed to prototype the MARKOS system.

6
 The infrastructure is provided by GEEKNET.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 13 of 79

3. TOP LEVEL ARCHITECTUR E

The MARKOS top level architecture specifies the offered and required interfaces of the

main components needed for the implementation of the MARKOS platform and the

interaction expected between these components to satisfy the user requirements

scheduled for the sprint 1 and the most stable and well defined user requirements

scheduled for the sprints 2 and 3.

Figure 1 ï Functional MARKOS architecture view

In the scope of this document each component is considered a black-box, so that no

architectural details are described for them. Their internal architecture will be

documented in next project deliverables.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 14 of 79

The context of MARKOS is shown in the functional view of the MARKOS system in

Figure 1. It reports the functional components developed in MARKOS. The arrows show

the flow of the significant data managed by MARKOS, that is information about OS

projects and released software existing on the web, analysed by the platform and

consumed by the end-users.

The diagram does not show neither the details of interactions between components, nor

the flow of ósecondaryô information like configuration data or query submitted by users.

Such details will be examined in depth in the next sections.

A desired characteristic of the MARKOS components is their ability to work

independently from each other, to perform their tasks even if other components are

temporarily unavailable. To allow such capability, some components use internal

repositories to store the data required to perform their tasks. It implies a better cohesion

of components, which leads to a greater flexibility of the system operations at the

expense of a higher data redundancy.

The OS projects and software data are actually distributed on several existing forges and

meta-forges on the web. These sites are the information source for the MARKOS

system. Sourceforge [16], BerliOS [17] are just some example of existing forges, which

are crawled by the Crawler component. The Crawler retrieves projects metadata,

compliant to the Description Of A Project (DOAP) format, which contains information

like project name, description, URI of source code repository, and so on.

The data gathered by the Crawler are stored in an internal repository, the Metadata

Database, and made available to the Code Analyser. The Code Analyser uses such

metadata to identify the projects to be analysed and the specific repositories from which

to download the project resources, like source code, configuration files and all other

useful data. For each project, the Code Analyser retrieves the resources from the forges,

analyses the structure of the software code, identifies the adopted licenses and stores the

result in an internal database, the Code Analyser Database.

The Repository component retrieves the data produced by the Code Analyser, translates

them in RDF triples and stores them in the Semantic Store. The Semantic Store is a third-

party component, managing RDF graphs and allowing the execution of SPARQL

queries. The Repository also provides features to safely interact with the Semantic Store,

in order to guarantee the consistency of the data provided to the end-users. Indeed,

interleaved read-write operations on the Semantic Store could lead to inconsistent

retrieved data. Thus, while read operations are allowed directly on the Semantic Store,

write operations are always mediated by the Repository. Furthermore, the Code Analyser

Database is also a support to recreate the Semantic Store, without going back to the

forges. For example, this is the case where it is required to recover from a disaster on the

Semantic Store or when a restructuring of the Semantic Store is decided to take into

account new requirements. This feature is particularly useful during the implementation

phase as the ontology changes over time as the project progresses and the rebuilding of

the Semantic Store could occur frequently.

When the Code Analyser recognises a dependency of the analysed software code from

other software released by a previously analysed project, it queries the Semantic Store

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 15 of 79

via the Browsing&Querying component to retrieve the description of the related

software.

The Browsing&Querying component provides a set of utilities to extract information

from the Semantic Store and to translate the data from a low level representation as RDF

triples to a higher-level representation in terms of Java objects.

The License Assistant, notified by the Repository when new data are available for one or

more projects, retrieves the data on the project licenses from the Semantic Store and

analyses the compliance of such licenses. The result is also stored in the Repository.

Finally, the results of the code analysis and license analysis are available to the end-

users, which can consume them via two channels: the Frontend and the Linked Data

Access Point.

The Frontend provides a web based graphical interface to allow human users to

formulate queries in a human understandable form, then it submits the queries to the

Repository. The interaction with the Repository is mediated by the Browsing&Querying

component in order to free the Frontend development from the complexity of the

adopted semantic technologies (RDF and SPARQL). Then, the Frontend visualizes the

code structure and licensing information matching the submitted queries.

The Linked Data Access Point provides to external software tools an access to the

Semantic Store in order to connect and share the MARKOS semantic knowledge on the

semantic web [3].

Each component defines at least one interface in a common and well-standardized

paradigm, i.e. REST or Java interface definition.

The schema to deploy the MARKOS components described above is showed in the

UML diagram of Figure 2. Such deployment diagram provides a high-level view of the

interactions between all MARKOS components, presenting technical details not shown

in the functional view of Figure 1. The diagram reports all the (physical or virtual)

machines (nodes), the deployed components and their provided and required interfaces,

drawing an overall picture of their relationships. In some cases, the functional blocks

depicted in Figure 1 result in several components deployed on different nodes. When this

happens, the mapping between deployable components and the corresponding functional

blocks is described as soon as the components are introduced. The detailed description of

each component and related interfaces are reported in section 5, while the possible

interactions to implement the target functionalities are reported in section 6 and

examined in depth in óAppendix B: sequence diagrams in detailsô.

The nodes can be of two different types: ódeviceô node, which represents a physical or

virtual machine; óexecution environmentô node, which represents a software process

providing the runtime for components, like Java Virtual Machine or Web Server. Each

device can host one or more execution environments.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 16 of 79

Figure 2 ï Deployment diagram of the MARKOS system

The most demanding components of computational and/or storage resources have been

deployed on dedicated device nodes. Accordingly, four different device nodes are

required to deploy the whole MARKOS platform, as described below:

The Crawling node hosts the Crawler component, running in the Crawling Process (a

web server). It is a living process continuously running to discover new or updated

projects on the web, which implies an intensive usage of hardware resources. The

Crawler is a RESTful service providing the ICrawler interface used by the Code

Analyser.

The Storing node hosts the Semantic Store, running in the Storage Process (a Java virtual

machine). The Semantic Store requires a big amount of disk space to store code and

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 17 of 79

license analysis results. It is a RESTful service providing the ISemanticStore interface to

allow data storing and retrieving operations.

The Code Analysis node hosts the Code Analyser, running in the Code Analysis Process

(a Java virtual machine). The Code Analyser requires an instance of the

Browsing&Querying component to retrieve data from the Semantic Store. It is a

RESTful service providing the ICodeAnalyser interface used by the Crawler and the

Repository Builder components.

The Service node hosts two execution environments, the Web Server and the Repository

Process. The former can be any web server, which allows the deployment of standard

Java web applications. It hosts the Frontend, the License Assistant Web App and the

Linked Data Access Point, which are all web applications. The Frontend allows the

navigation of the projectsô code structure, while the License Assistant Web App

performs the license analysis and allows the visualization of the results of such analysis.

The License Assistant Web App is a module of the License Assistant functional

component reported in Figure 1. The License Assistant Web App is triggered by the

Frontend by means of standard http/html requests at the level of web browser: the end-

user navigate from the Frontend web interface to the License Assistant web interface, by

selecting the components resulting from a query and asking for the license analysis

functionality. The Linked Data Access Point is a web app, which allows other software

tools, the Linked Data Consumers, to access the MARKOS semantic knowledge. Finally,

the web server is also responsible for the instantiation of the Browsing&Querying library

used by the Frontend to query the Semantic Store. The Browsing&Querying component

provides two interfaces, ISearching and IBrowsing, both of them accessed by the

Frontend via JAVA method invocations.

The other execution environment on the service node is the Repository Process, a

standard Java web server, where the Repository Builder and the License Checker are

deployed. The Repository Builder is a web application, which is a module of the

MARKOS Repository functional component in Figure 1. It manages all the write

operation on the Semantic Store and it is responsible for the consistency of the data

stored in there. Both the Code Analyser and the License Assistant Web App interact with

the Repository Builder to store, respectively, the code analysis and license analysis

results in the Semantic Store. The License Checker is a library deployed as a module of

the License Assistant functional component reported in Figure 1. It is responsible to

perform the óquick and dirtyô license check
7
 of the software components resulting from

the code analysis.

7
 More details on the óquick and dirtyô license check and license analysis are reported in the section 5.3.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 18 of 79

A coarse-grained estimation of the hardware requirements of the MARKOS components

has been provided by the component owners and submitted to the infrastructure provider

for an acceptance validation. It is a very generous estimate based on the possible internet

traffic and amount of data to manage. The actual requirements depend on many factors,

which are currently unknown, such as the real number of users and daily traffic, the

number of crawled projects and the amount of data produced by code and license

analysis tools for each project.

 OS CPU RAM
Disk

Space
Networking

(download/day)
Major software

tools

Crawler
Linux

(Debian/Ubuntu)
n.d. 4 GB

100
GB

2 GB
MySQL, Python,
Pyramid, Apache

Code Analyser
Linux

(Ubuntu)
4 core 8 GB

512
GB

4 GB

MySQL 5.x,
Apache Tomcat

7.x, Perl
interpreter, Java

7 SDK

License Assistant
Web app

Linux
(Ubuntu)

8 core 24 GB
256
GB

2 GB Java 7 SDK

Repository /
Semantic Store

Linux
(Ubuntu)

8 core 24 GB
256
GB

n.d.
Java 7 SDK,

Apache Tomcat
7.x

Frontend
Linux

(Ubuntu)
8 core 16 GB 100GB

2 GB
(~1.5M

requests/day)

Java 7 SDK,
Apache Maven

3, Web
Container

(Apache Tomcat
or Jetty or

GlassFish or
JBoss), Apache
with HTTP proxy

module

Browsing&Querying OS independent 2 core 2 GB n.d. n.d. Java 7 SDK

Linked Data
Access Point

OS independent 4 core 8 GB n.d.
~10k

request /day

Java 7 SDK,
Apache Tomcat

7.x

Table 1 ï Hardware and software requirements of MARKOS components

The list of the major software tools enabling the correct execution of the MARKOS

components is provided as well. The hardware and software requirements are reported in

Table 1.

The Frontend, License Assistant Web App, Linked Data Access Point and

Browsing&Querying components are all deployed on the same node (the service node).

As they share the same hardware, the unified proposal for hardware requirements of such

node is: 12 core CPU, 32 GB of RAM, 2 GB of downloads per day. The software

requirements of the unified proposal match the software requirements of the Frontend in

Table 1.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 19 of 79

4. INFORMATION MODEL

The Information Model
8
 shown in Figure 3 below defines the main types of data

exchanged between the MARKOS components. It provides an initial UML

representation of information that will be better and completely specified by the

MARKOS ontology, to be described in the deliverable D2.2.1. While the MARKOS

ontology will be specified in OWL and the managed data stored as RDF triples, most

MARKOS components will be implemented in JAVA, and will use JAVA objects to

represent the exchanged data. A corresponding Java Class will represent each OWL

class. The alignment of the two data representations will be guaranteed by the automatic

generation of the JAVA classes from the OWL ontology.

There is a number of tools like JAOB [10], Jenabean [11], Jastor [12], OpenRDF

AliBaba [13] that are able to create JAVA beans based ontology model and RDF data.

Nevertheless, because of high automation of class generation process to reach the final

form of JAVA class, some further processing and implementation is required. This

implementation will introduce and adjust functionality that will cover all requirements

defined by MARKOS system components.

The Information Model shown in Figure 3 focuses only on the types of data referred by

the other design UML diagrams. Indeed, it reports the entities ï and their relationships ï

directly used as input and output parameters of the operations provided by components,

which are described in the UML diagrams in the next sections. All the related entities

indirectly involved in the data exchanges are reported as well, each time they help to

improve the understanding of the model.

Most of the defined classes and attributes are a representation of the domain terms

defined in the MARKOS glossary, reported in the appendix A of the deliverable D1.1.1;

when possible, the names used in the glossary are preserved in the Information model for

traceability reasons. When the names from the glossary are not preserved in the

Information Model, a mapping is provided to easily identify the definition of each entity.

In the few cases in which an entity of the model is not defined in the glossary, a

definition is provided in this section.

According to the adopted incremental development approach, the reported Information

Model focuses on data involved in the component interactions defined for the sprint 1.

The model could be continuously enriched with new entities during the project, when the

interactions between components will be further defined.

The relationships among the entities of the Information Model are described in the

following section. The italic font is used to highlight the named entities of the model

8
 Synonymous of Entity Model in MARKOS

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 20 of 79

when they are mentioned for the first time. It is also used to highlight the domain terms

from the glossary that are mapped to the reported entities.

Figure 3 ï MARKOS information model

Every information in the model is an Entity. An entity is the most generic data type

managed by MARKOS components and all other data types are derived from it (they are

specializations of Entity). Each entity has at least a description, a creation date and a set

of annotations (tags), which enable the communication and the exchange of experience

between users. The main specialized entities are the SoftwareProject (glossary domain

term Project) and SoftwareEntity entities. A software project releases a collection of

created or maintained software and non-software artefacts, with the constraint to release

at least one software artefact. Software artefacts are concrete manifestations of any

software (i.e. located in time and space), and they are written in a specific

ProgrammingLanguage. Different software artefacts released by a software project can

be written in different programming languages; non-software artefacts are any other

concrete manifestations like binary executable files, tables in a database system,

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 21 of 79

development deliverable or word-processing document, images, configuration files, and

so on.

The artefacts of a software project are stored in a FileRepository. A file repository is

defined as ña data structure possibly in a revision control system, usually stored on a

server, that may contain: a) A set of files and directories; b) Historical record of changes

in the repository; c) A set of commit objects; d) A set of references to commit objects,

called heads.ò Thus, a file repository can contain zero or more SourceCode, ObjectCode

and NonCodeFile. All of them are FileSystemElements, that is ña data structure (a file or

a directory) managed by a file systemò. Source code and object code are manifestations

of one or more software entities.

A non-code file is any software file that is neither a source code nor an object code.

MakeFiles and ConfigurationFiles are non-code files. Make files are used by a Make

utility, that specify how to automatically build executable programs and libraries from

source code. Configuration files are used to configure the initial settings for some

computer programs.

A software project can release one or more software entities whose aggregation is called

a SoftwareRelease. A software release is defined as the ñsoftware and related

documentation officially released by a projectò. Since software is an abstract entity, then

the software release can contain both abstract entities and artefacts (which are concrete

elements). All the artefacts released in a software release are file system elements.

Typically, more than one software release can be produced by a software project.

A software entity is an abstract entity specialized by the concrete entities Library,

SoftwareClass, Package, Operation and Interface. It can depend on other software

entities and such dependency is represented by DependsOn (glossary domain term

(software) dependency). The dependency relationship implies that the source code of the

subject software entity needs the source code of the object software entity to be

interpreted or compiled.

Each software entity can be protected by copyright. Then, it is associated to a

CopyrightLicense, which is ñany individual license, with which a particular legal entity,

the licensor, grants rights to another legal entity, the licensee.ò Such entity also provides

information on the compliance of the license with which the software entity is released

and the licenses associated to any other software entities used by the former. Such

information is heuristically calculated and reported by isHeuristicallyCompliant

attribute. Furthermore, an argumentation is provided to justify the result of the

compliance analysis, reported by complianceArgumentation attribute.

A copyright license is an instantiation of a CopyrightLicenseTemplate. A copyright

license template is a form license like, for example, GPL or BSD.

A library represents an aggregation of software entities released by a project.

An operation is a behavioural feature, typically declared in an interface, which can be

implemented by zero or more Methods and each method can implement zero or more

operations. A method can invoke or be invoked by other methods.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 22 of 79

An interface represents a declaration of a set of operations and can be implemented by

software classes or Components.

A component is a modular part of a software system encapsulating its contents and

which defines its behaviour in terms of provided and required interfaces. In some

programming languages a component is also a software class; in other programming

languages several software classes may substitute it. A component, like a software class,

can provide and/or require zero or more interfaces. On the reverse side, an interface

provided by a component can be required by zero or more components.

Interfaces can be aggregated in APIs, which are software packages containing only

interfaces.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 23 of 79

5. MARKOS COMPONENTS DESCRIPTION

The details of every component of the MARKOS system are described in the following

sections. The purpose of each component, their provided interfaces and the interfaces

required to other components to fulfil their tasks are reported.

The component diagrams complement the descriptions by reporting the offered and

required interfaces in a graphical notation.

For each interface, the communication protocol to use for interactions is specified.

The technical details for the invocation of each interface are reported in óAppendix A:

Component interfaces in detailsô where the offered operations are described in terms of

input, output and invocation mechanisms according to the communication protocol used.

5.1. Crawler component

The Crawler is the main entry point for projects information into the MARKOS system.

The Crawler is responsible to fetch information about open source projects from forges

and meta-forges. Such information has a twofold goal in MARKOS:

- Provide as much detail as possible to the final user through the Frontend.

- Provide the URL for the repository of the code to the Code Analyser.

Figure 4 ï Crawler component

The Crawler will consist of several processes fetching and pre-processing information,

browsing repositories looking for new projects releases. When a batch of such

information about projects or a list of projects having new releases is ready, the Crawler

will notify the Code Analyzer using the ICodeAnalyser interface.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 24 of 79

5.1.1. Provided interfaces

ICrawler interface

The ICrawler interface is used by the Code Analyser to fetch data about the projects.

The Crawler will offer some parameters, which will prioritize its processes in order to

optimize the use of resources such as bandwidth, CPU time, etc. The Frontend will use

the ICrawler interface to allow the administrator to read and set configuration

parameters.

5.1.2. Required interfaces

The Crawler uses ICodeAnalyser interface to notify the Code Analyser when new

projectsô metadata are available, identified by batchID.

5.2. Code Analyser component

Figure 5 ï Code Analyser component

The general goal for the Code Analyser is to extract from software repositories

information about software artefacts to be used for supporting their retrieval in the

context of a code search activity. The code search can be performed at different levels of

granularity, e.g., entire packages/libraries able to fulfil a given piece of functionality, a

source code file/class, but also a small source code snippet/fragment that can be relevant

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 25 of 79

for a specific task, e.g. a snippet useful to implement a particular sorting algorithm.

Moreover, the Code Analyser must extract and process the source code licensing

information that will be used by License Assistant to determine whether the discovered

artefact is compliant from a legal point of view. In addition, it is necessary to extract

dependencies, to identify requirements necessary to be fulfilled when one wants to use a

discovered code artefact, and to determine whether the dependencies would create legal

issues, e.g., because of interconnection with artefacts that are not compatible-from a

licensing point of view-with the system.

Figure 5 reports the component diagram showing the Code Analyser. The focus of the

component diagram is on the interfaces (i) required and (ii) exposed to the other

MARKOS components. In particular, the Code Analyser will mainly communicate with

the following MARKOS components:

- The Crawler, with which the Code Analyser exchanges information about the

software projects to analyse.

- The Repository, to which the Code Analyser provides information about the

analysed projects.

- The Browsing&Querying, used by the Code Analyser to retrieve information

needed to analyse software projects, like project dependencies.

5.2.1. Provided interfaces

ICodeAnalyser interface

This interface is used by the Crawler to notify the Code Analyser about new project

releases to analyse, or about changes in the metadata of already indexed projects.

It is also used by the Repository to retrieve from the Code Analyser the new available

data to be stored in the Semantic Store. The Code Analyser will provide the required

information as a list of new software projects. The communication between the

Repository and the Code Analyser is just one-way, i.e., the Code Analyser exposes a

service to the Repository while the opposite is not needed.

5.2.2. Required interfaces

The Code Analyser expects from the Browsing&Querying component (and in particular

from its interface IBrowsing), information needed to perform dependencies analysis on a

software project. In particular, when the Code Analyser finds a dependency between a

file A of a project under analysis and a file B belonging to an external project, the Code

Analyser asks to the Browsing&Querying component the provenance of this file, or, in

other words, the software project to which the file belongs. This service will be provided

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 26 of 79

in the IBrowsing interface by the method getProjectByReleasedFile(releasedFileName :

String) : Project. The output of this method can open the two possible scenarios depicted

below:

1. The project to which the required file belongs is retrieved by the

Browsing&Querying component, and thus the Code Analyser does not require

any further information.

2. The project to which the required file belongs is not identified by the

Browsing&Querying component. In this case, the Code Analyser marks the

dependency as ñnot resolvedò and will try to solve it in future by invoking again

the Browsing&Querying component.

5.3. License Assistant component

The aim of License Assistant components is to help developers to efficiently and cost

effectively assess open source licensing issues and minimize their legal risks. Our basic

idea for providing software tools which can help developers to effectively analyse

licensing issues in a legally adequate manner, without placing unrealistic demands on

their time or presuming too much prior knowledge of copyright law, takes a two-pronged

approach:

1. A fully automatic License Checker will use a configurable legal profile to make a

first, rough analysis of licensing issues. The legal profile expresses simplifying

assumptions about copyright law and can be configured to minimise legal risks. The

legal profile is applied uniformly to all the software used, without regard to national

differences in copyright law. The idea is to err on the safe side, by identifying and

signalling potential copyright issues and explaining the causes of the issues.

2. If any issues are signalled by the License Checker, the developer can choose to either

resolve the cause of the issue, for example by choosing to use another license for his

own software or another component with a compatible license, or to invest time in a

more thorough investigation of the issues, using an interactive License Assistant Web

App. It provides support for constructing, visualising, evaluating and comparing

competing legal arguments and theories.

The figure below shows the License Assistant components along with the application

programmer interfaces (APIs) they provide and the APIs upon which they depend.

There are two License Assistant components, the License Checker, a Java library, and

the License Assistant Web App, a web application. The License Checker library is used

by the Repository Builder. The Repository Builder notifies the License Checker of any

modifications to the repository. The License Checker checks or rechecks the licenses of

any software entities affected by the modifications and then executes a function of the

repository to store the results of the checks. The License Assistant Web App is a web

application providing developers direct access to the automatic License Checker tool in

addition to the interactive license assessment functionalities.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 27 of 79

The License Checker implements the IRNotification interface and the License Assistant

Web App implements the ILicenseAssistantWebApp interface. These two interfaces are

described next.

Figure 6 ï License assistant components

5.3.1. Provided interfaces

IRNotification interface

The License Checker Java library implements the IRNotification interface. The

Repository Builder uses the offered softwareEntityChange operation to notify the

License Checker of new or modified software entities in the repository.

ILicenseAssistantWebApp interface

The License Assistant Web App implements the ILicenseAnalyserWebApp interface.

The interface consists of two operations, analyseSoftwareEntity and analyseProject, for

checking the licenses of a particular software entity or all the software entities provided

by a project, respectively.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 28 of 79

5.3.2. Required interfaces

The License Checker uses the IRepositoryStore Java interface to store its results in the

MARKOS repository. The License Checker and the LicenseAnalyserWebApp both use

the ISemanticStore interface to send SPARQL queries to the repository to retrieve

information about the software entities and their licenses.

5.4. Repository component

Figure 7 ï Repository components

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 29 of 79

The Repository component is introduced to represent the software layer responsible for

accessing the Semantic Store. The design of this component is based on the separation of

the functionalities associated with the building of the semantic repository and the

functionalities used for reading its content. As a consequence of this assumption, the

reading of data is delegated to the Browsing&Querying component, responsible for

execution of SPARQL queries and processing of the responses. It hides the complexity

of RDF representation and builds Java objects based on information retrieved from

repository.

The writing operations are delegated to the Repository Builder, which is a service

responsible for managing the process of building and provisioning the content of

Semantic Store. It communicates with the Code Analyser to harvest available

information concerning software projects. Then it translates this information to semantic

representation and stores it in the repository. It also enriches the information with the

basic license analysis results performed by the Licence Checker component.

The Repository Builder manages the life cycle of the Semantic Store: building the

content, checking the consistency of information, submitting the reasoning process,

preparing the production repository for Frontend.

Semantic Store is a third party component.

Semantic Store is a RESTful web service component, which is implemented by a

standard Sesame SPARQL endpoint [14]. It allows data retrieval from the RDF store.

5.4.1. Provided interfaces

IRepositoryStore

IRepositoryStore is a Java interface allowing license analysis and license check

components to store the results of their processing in the Semantic Store. It is also used

by a web service IRepositoryStoreWS to implement the logic responsible for storing

relevant data.

IRepositoryStoreWS

This is a RESTful service exposing the IRepositoryStore interface allowing other

MARKOS components to store license analysis results through HTTP based requests.

ISemanticStore

This is a RESTful interface which enables execution of SPARQL queries. It will be

implemented by the Sesame based SPARQL endpoint.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 30 of 79

5.4.2. Required interfaces

The Repository Builder component uses the IRNotification.softwareEntityChange

interface to signal the fact of a change of data related to a given entity. It also uses the

ICodeAnalyser interface to periodically retrieve project analysis data from the Code

Analyser database.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 31 of 79

5.5. Browsing&Querying component

The Browsing&Querying component provides a set of utilities to extract information

from the Semantic Store. All provided information aggregates the data in a high-level

structure, represented by the entity model described in section 4.

The component is designed to be a library supporting the fetching interactions from the

Semantic Store. To facilitate its use, it has been designed keeping in mind that it has to

be invoked like a local set of utilities; so, as enabling technology, Java has been chosen.

The component provides two different interfaces called ISearching and IBrowsing, in

particular the ISearching interface provides a set of utilities that are used by the

Frontend, while the IBrowsing interface is used by the Frontend and the Code Analyser.

It may be deployed in more than one node (each deployment representing a different

instance of the component).

Figure 8 ï Browsing&Querying component

5.5.1. Provided interfaces

ISearching interface

The ISearching interface is meant to query the MARKOS Semantic Store, hiding the

complexity of the SPARQL queries from the client. Such searching functionalities are

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 32 of 79

offered to the users by the Frontend component. The Frontend will provide a specific

search form for each type of query enabled by this interface.

IBrowsing interface

The IBrowsing interface offers methods to support the retrieval of additional information

about specific entities. For example a user, who is visualizing the description of an

entity, can ask and obtain the description of related entities. The related entities can be

referred either as the values of the attributes of the first entity (i.e. direct relationship), or

as the values of inferred properties of the first entity (i.e. inferred relationship).

5.5.2. Required interfaces

Since the Browsing&Querying component has to retrieve information from the Semantic

Store it has to communicate with that component. To obtain such result it requires the

interface called ISemanticStore.

In particular that interface is used to execute SPARQL queries created by the

Browsing&Querying component for extracting direct or inferred relationships from the

store. Whenever such relationships cannot be aggregated with a single query, the

component will interrogate several times the store aggregating the many results obtained.

One additional advantage obtained by interacting with the ISemanticStore is the

possibility to obtain a representation of the RDF graph compatible with the entity model

described in section 4.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 33 of 79

5.6. Frontend component

Figure 9 ï Frontend component

Frontend component aims to expose a user-friendly user interface intended mainly for

software analysts and developers. The users can use the MARKOS Frontend to find

implementations of a particular API by specifying some criteria such as name, type,

programming language, licence type, tags, etc.

The MARKOS Frontend also can help them decide which of the available

implementations are most appropriate for their use, by offering some features such as

tools to make an in-dept analysis on whether a particular licence type is compatible with

the licences of the dependency libraries, tree-style views to browse dependencies with

other libraries at package or class level. The Frontend also provides a mechanism to

leave comments on different open source projects.

5.6.1. Provided interfaces

IFrontend

IFrontend interface will be offered through REST interfaces. This interface is mainly

used by the Repository component during óMetadaChange Notificationô and

óDownstream notificationô interactions, to inform the Frontend about the new project

releases and any changes that are detected in the project related metadata

5.6.2. Required interfaces

Frontend component requires the following interfaces from other components:

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 34 of 79

- IBrowsing: From Browsing & Querying component, in óQuerying by interfacesô

interaction. The Frontend uses the IBrowsing interface to submit queries to the

repository to get all software entities (libraries, packages, components) fully or

partially implementing an API the user specifies.

- ISearching: From Browsing & Querying component, in óQuerying by metadaô

interaction. This interface is used by the Frontend to submit queries to the repository

to search for entities by supplying some details like exact or approximate name, the

entity type (e.g. class, package), etc.

- ILicenseAssistantWebApp: From License Assistant component, in óAnalyze

licencesô interaction. Frontend uses this interface to delegate the in-dept licence

analysis operation to the licence assistant component.

- ICrawler: From Crawler component in ósetConfigurationô & getConfiguration

interactions. This interface is used to interact with the Crawler component to

retrieve and set the crawling configuration properties.

5.7. Linked Data Access Point

The Linked Data Access Point provides to software tools external to MARKOS an

access to the Semantic Store, to connect and share the MARKOS semantic knowledge on

the semantic web.

The way the semantic information is provided is compliant to some standardised

publishing patterns, such as:

- RDFa
9
 embedded in web application pages; this approach offers to the users the

capabilities to explore the information using a web browser;

- Automatically generated RDF contents; whenever the users ask for a linked data

resource the component is able to provide the related RDF fragment.

The main objective of this component is to extend the global semantic knowledge

publishing data, which refers to globally accessible ontologies, in a standard format. In

this way, the users can use the MARKOS results to create and infer additional

information.

9
 RDFa is an enabling technology used to include structured data (i.e. RDF graphs) in HTML pages to augment

the visual information on the Web with machine-readable hints.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 35 of 79

Figure 10 ï Linked data access point component

5.7.1. Provided interfaces

The linked data component does not implement any API, yet it is able to interoperate via

HTTP with clients dereferencing URIs. If those clients support the content negotiation
10

,

the component is able to retrieve specific resources or RDF fragments in the client

preferred representation format; otherwise the results are retrieved in the default format,

likely RDF/XML.

5.7.2. Required interfaces

Since the Linked Data Access Point component has to retrieve information from the

Semantic Store, it has to communicate with that component. To obtain such result it

requires the interface called ISemanticStore on which it can execute SPARQL queries to

retrieve fragments of the RDF graphs.

5.8. Annotation and Communication component

The "Annotation and Communication" (A&C) component is used to annotate and

retrieve the properties and metadata of FLOSS components such as projects and software

entities considering selected elements of the MARKOS ontology. It enables the

10
The content negotiation is a strategy formalised by W3C in the HTTP standard, enabling multiple

representations of data on the same URI. Usually the goal of such negotiation is to provide the best

representation the client can process. In the case of the RDF it can result in several serialization formats,

such as: RDF/XML, HTML.

FP7-<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architecture and Service

APIs (initial)

WP2 ï Upper model and architecture Ò markos Consortium Page 36 of 79

communication and the exchange of experience respectively feedback between

MARKOS users.

Figure 11 ï Annotations component

To retrieve information about the FLOSS projects and to link annotations to specific

entities it uses either the ISemanticStore interface or the linked data access point. The

design of this component is still in incubation, thus technical details will be elaborated in

the next sprints.

To enable communication between MARKOS users the component supports user

management and discussion threads. User management is needed to identify other users

and their roles, especially managers of FLOSS projects and to give feedback to the

authors of annotations. Thus annotations are linked to projects and entities and assigned

to their author. Retrieval of annotations and feedback is possible in discussion threads

based on selected projects, entities and users.

For the synchronization with the Frontend, the A&C component uses two interfaces,

namely IAC2FrontEnd and IFrontEnd2AC, which will be specified in detail in the next

version of the architecture as part of sprint 2. The interfaces are used to provide

information about the current context of a user, e.g. a specific project and to transfer

control between the MARKOS Frontend and the A&C component.

