COOPERATION

FP7ICT-20118

MARKOQOS
The MARKet for Open Source

An Intelligent Virtual Open Source Marketplace

markos

WP 2 - Upper Model and Architecture

D2.1.1a1 Specification of the MARKOS
Architecture and Service APIs (initial)

Due date:30 April 2013 Delivery Date: 30 April 2013

Author : Antonio De Nigro (ENG) Partners contributed: Fraunhofer, ATOS
ENG, PSNC, Unisannio, SF

Dissemination level PU* Nature of the Deliverable:Report
Internal Reviewers: llknur Chulani(ATOS), Gabriele Bavota (Unisannio)

* PU (Public)

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

VERSIONING

VERSION DATE NAME, ORGANIZATION

0.1 14/01/2013 | ANTONIO DE NIGRO (ENG) T DRAFT OF THE DELIVERA BLE STRUCTURE

0.2 04/03/2013 | ANTONIO DE NIGRO (ENG) I FIRST DRAFT OF THE DELIVERABLE . ALL CONTRIBUTION
FROM PARTNERS INTEGR ATED.

0.3 05/03/2013 | SILKE CuUNO (FRAUNHOFER)T UPDATE TO NEW DELIVER ABLE TEMPLATE

0.4 12/04/2013 | ANTONIO DE NIGRO (ENG) 1 FIRST RELEASE FOR INT ERNAL REVIEW

0.5 21/04/2013 | ILKNUR CHULANI (ATOS), GABRIELE BAVOTA (UNISANNIO) T INTERNAL REVIEW
COMMENTS & SUGGESTIONS

0.6 23/04/2013 | ANTONIO DE NIGRO (ENG) T INTERNAL RELEASE COMM ENTS & SUGGESTIONS
ADDRESSED. SECOND RELEASE FOR INTERNAL REVIEW

0.7 28/04/2013 | ILKNUR CHULANI (ATOS), KLAUS-PETER ECKERT (FRAUNHOFER) i INTERNAL REVIEW
FINAL COMMENTS & SUGGESTIONS

1.0 30/04/2013 | ANTONIO DE NIGRO (ENG) T OFFICIAL RELEASE . FINAL COMMENTS & SUGGESTIONS
ADDRESSED

WP21 Upper model and architecture O markos Consortium Page? of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

Executive Summary:

The primary goal of the MARKOSsystemis to providean integrated view on the Open
Source projects available on the web, focusing on functional, structural and license
aspects of the software code released by the projdARKOS wants to offer
developersand analystsa solution for choosing the Open Sarcomponents more
suitable to their needs, to learn how to integrate or extend @r@min generahimsto
fostereasy adoptionf Open Source Software

The toplevel architecture describes how the projects are crawled by the existing forges
and metdorges, and how they are processed by the system to extract meaningful
information to present to MARKOS (human) users and to other external software tools.

The design activity has been driven by the user requirements described in D1.1.1 and
focuses on the functionalities to be implemented during the first period of the project;
therefore it will be improved in the next months.

The architecture provides an oskrview of the mainfunctional components to
implement the MARKOS servicesn terms of offered and required interfaces and
interactions between these componehtsreover, it has been the means to clarify the
work assignments to separated design andemehtation teams inside the MARKOS
project, by defining the features to be implemented by each team.

Disclaimer: The information and views set out in this publication are those of the author(s)
and do not necessarily reflect the official opinmnthe European Communities. Neither the
European Union institutions and bodies nor any person acting on their behalf may be held
responsible for the use which may be made of the information contained therein.

© Copyright in this document remains vestethvthe MARKOS Partners.

WP21 Upper model and architecture O markos Consortium Page3 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

Specification of the MARKOS Architecture
and service APIs (initial)

Table of Contents

1. INTRODUGCTION ..ot ettt e et et e eeeet e e eaa e s st e e s aa s e s s s e saneesbansesansessansssnmmtanssssnsd 8
2. ARCHITECTURE DEFI NITION DRIVERS .. .ottt eemma e e e e et e e e 11
3. TOP LEVEL ARCHITE CTURE .. oottt e e temmt e et e e e e e et e s snaee st e esanaes 13
4. INFORMATION MODEL ..ouiiiiiiii ettt ettt ettt e et ere e e et e e e e e e et e e e et s e s ammae e s et e esansesanseseen 19
5. MARKOS COMPONENTS DESCRIPTION ...ttt ettt e e et e et e e e e et e e s e eeaaas 23
5. 1. CRAWLER COMPONENTt uttttttettetuten et aeseassaesaeesassnesn s aessassanstatanseansstnstennssansetnsrsnseenssteeren 23
LT 0 R = (o A /T (=0 I 0 (= = (o= 24

LTS B o= To [0 T (=To T (=] = Tt =S SUSRPPPPPNS 24
5.2.CODE ANALYSER COMPONENT .1 uttttttttttttettetsisensasstestasstessessssisessssesseesntssntesessneernssiesneesnersnnes 24
LI N = (o A/ T [=To I 0] (=T = (o= 25
LN = To [1T (=To T (=] = Tt =S SUPUPPPPPNS 25

5. 3. LICENSEASSISTANT COMPONENT . .tuttutitttttetteitetireseaseaetteeasesessssnmnssasssseraessnsesnessnsiennssssnseens 26
LT T I = (0 1/ [(=10 I T 0] (=T 7= oL =3 T 27
5.3.2. REQUIrEd INTEITACES ...ttt ettt e e et ener e e e e e s sbbeeeeeeeaae 28

5.4 . REPOSITORY COMPONENT ... tuutttttttttetestesesirnnssesesesesestesessesiannsesessestestestestestesieenserersererrrens 28
LI N = (o A/ [0 [=To I 0] (=T 7= L= 29
5.4.2. REQUIrEd INTEITACES ..ottt e e e st b e ener e e e e e s sbbeeeeeeeaae 30
5.5.BROWSINGEQUERYING COMPONENTutttttttiuteetettineestnnntestenessestsnasseesssssaaassessssssnssesssssnnseessmmnnsssnns 31
TSI I = (0 V1o [=To [T (] =107 =T 31
T = L= To (U] =To I Ta] (T o = (o= SR 32

5.6, FRONTEND COMPONENT ..ttt ttttttttettnettns et temaestaesaneetesansstaestseenntasaassteetssasstessanenranssaestaesanssternns 33

N S0 I = (0 V1o [=To [T (] =107 =T 33

N I S L= To (U] =To T] (T o = (o= SR 33
.7 . LINKED DATA A CCESSPOINT .ottt ieiee ettt ettt e et e e et e et e reeee et e et et s e et s e st e s smaassensereneaes 34
LI N o (o 1V (o [=T0 T 0] (=T 7= oL 35
5.7.2. REQUIrEd INTEITACES ...ttt ettt e e e ereb e e e e s sbbeeeeeeeaae 35
5.8.ANNOTATION AND COMMUNICATION COMPONBNT ...cutitnienetneitnetenseteeeesnsanseaneeteransesssrmeesssnsrasesseees 35

6. COMPONENT INTERAC TIONS ...ttt ettt et et e e et eee e e e et e e e e s e et e e et e e s remaa e s eaneesees 38
6.1.CRAWLING AND CODE ANALY SIS, . .euittietutittttenietn et eestaseea et saa ettt am.ran ettt teasttseasrnmtseasernns 38
6.2.LICENSE ANALYSIS AND STORING.....uuttuutitettettetteinniesteestestteetessterneernntessnetssiesesstrsneesinrnressreen. 39
6.3.SEARCHING AND VISUALIZATION .vuituiitniiineitneiieetneinnnesiersnestsersnssssessseenntesssnssssesssesssesssesssnennsnesnness 40

7. CONCLUSIONS AND NEXT STEPS .. .ottt e e ere e s e s e e st e e saa e s sbm e e saass 42
L N O TR 43
APPENDIX A: COMPONEN T INTERFACES IN DETA ILS ..ottt 44
(@1 VY == ol 0] V1 =10 N[= N TR 44
(07 =Y LY G (01 (=] 1= o< TR 44
CODE ANALYSER COMPONENT ... ttutttneitneitettseeseesmssesstasstsessssesssssimensssssssssssesssersssssesssresssessssssernessss. 40
[[@faTo [y N F= 1YY PO PPPPPOPPPRPPPPR 46
LICENSEASSISTANT COMPONENT ...t tettttettsettesess s saeesesassessesesseeansts ——asesensesaressasersersernmtsestaseesnnses 49
IRIN O ICALION INMEEITACE. ... ittt e e et e e e e et e s e et eneeeeaneeeeseseataeeeaneees 49
ILICENSEASSISTANTWEDADD. ...ttt e e e 49
REPOSITORY COMPONENT. ...t uttttttttttettetteimnestesssssaesaesstesasransssassssesnestattanetsianntassnsesnestsranestnersnns 50

WP21 Upper model and architecture O markos Consortium Pages of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

IR EPOSIDIY STONE ...ttt ettt ekttt eeat e e s ekttt e e o sttt eeme e e e s eeb b b et e e e s annb b e e e aeanreeeean 50
IREPOSITONYSTIOTEVIS. ...ttt ettt e e e ettt e e e e s bbb e e e eeamt e e e e e ab et e e e e e anbb e e e eenes 51
BROWSINGZQUERYING COMPONENT.ttitetteitttettustuunnummmeestesannaaaaeaaaaaeeeenaaeaaaateeessssasnnnn s eseaaaaaaaaseseeas 53
INTEITACE |SEANCNING.eeeiiiei it et ettt e s rmme e e e e e e e e b e e e e e 53
INEEITACE IBIOWSING. .. eiiiieeeeeee e e et e e i i s cieee e e e e e e e e e e e e e e et eees e s s e s e anaee e etesee e s eeananssnsenntessnnneeeeeeeeeannnts 55
FRONTEND COMPONENT.ttttttttetteeeeeeetaeaassssbesesssseeeeeeeeeeeeeamassseeeeeeeeeetaaaaeeessesamamreeetaeeaeeeaaessassasannnnens 57
1 0] 0] (=T o o PSS 57
APPENDIX B: SEQUENCE DIAGRAMS IN DETAILS ..o e 59
CRAWLING ettt ittt ittt et ee e e e e e e e e et ettt et e e e e e e e e e a4 oo e o e ek meme e e e e e e e e e oa e a s e a bbb ek be e e s 4 e R et bbb e s b e e e e e eeeeasnnnnnbbnbbenee e e 59
01701 o T [USRS 60
(0]] = A N I 1 T PSPPSR 61
UPDATE SEMANTIC STORE....uttuutetttttusiesttstusieaesaesestansaesesssnsaessesunmntsnaetestanaeeeesnnaessannseessnmeteermneeeemnnn 64
CHECK LICENSES. .. cttttttieetttte s e ettt s e e ettt s e e et et e e et eenmeetaa e e e eessa e eeeesssn s saaasseesestnnseesensnnseesesrnnnssnneeeeesd 65
QUERYING BY METADATA ... itteeeeeeetteteettettnmmmeaetetsss s e s eeaaaaeeeetaaasaaaeeeeeesstetnnnaseeeeaansaaassseeeeeeeeeeessssnnnnnd 66
QUERYING BY INTERFACEScetttttttutuaiateeeaetetaaasaeaaeteteteasstatannn s saeasasaanaaseeeaaateeeeesstsrnmnteeessbebnnnaseaeeaaaes 68
ENTITY VISUALIZATION AND BROWSING......uuuutuututtueneeeeeeeianasssnssssseeseeeereeseessasaessssseeeeeeeseeaeeeeeesssmmsnseseenes 70
AINALYSE LICENSES. ... i tttttiuteetittisee s ttiemmst e et et s e e s ea s e s aneae s ee bt e e e eeta s e e e eebas smea e e e e e tb e e e eetaaneeeeesnnmeenan s 72
METADATA CHANGE NOTIFICATION ...tttttutetetttusesestsusseanssesssstansessessanseesessnmmsssneesestsneesestsneetneneeesnnnerees 73
1121/ o T =T PSPy 0
DOWNSTREAM NOTIFICATION .. tttttttteetettuuessesssimmsssnseesesseneesesssneessnnasesssnseetesssneetestsnsmmaasseseernnmeeeemn 15
1121, o T =T PSSP
CRAWLER CONFIGURATION ...t tttttti s e esetti s eesesimmmstanaeesestanaeaesssn s aaanesssssanaeeeesssnsaeeesssmmsnseesessnnsaeeeessnnens 77
USERANNOTATION ...ttt et teeeuutttttetteeneesassasnsssseestaeeseeeeeeaaaasssssssesseeseeeeeeeeeeeeemnnsssseeeeeeaeaaaaeeaeeeesssaanneeeeees 77
APPENDIX C: USER REQUIREMENTS i SEQUENCE DIAGRAM MAP PINGccccoiiiiiieiiiiiiieiienn, 78

WP21 Upper model and architecture O markos Consortium Page5 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

Abbreviations

FP7 Seventh Framework Programme
IPR Intellectual Property Rights

WP Work Package

0OS OpenSource

0SS Open Source Software

DBMS Data Base Management System
DOAP Description Of A Project

RDF Resource Description Framework

List of figures

Figure 1i Functional MARKOS architecture VIEW............cooooviiiiiimmn e 13
Figure 2i Deployment diagram of the MARKOS sySteml..........cccoeeeeeiiiiieeeiieieeee e, 16
Figure 3i MARKOS information model.............oooiiiiiiiiee e 20
Figure 41 Crawler COMPONENL........uuuiiiiii e et e ceeer e e e e e e e e e e e e e e e e e aeees e e e e e eeaeaeeeeeeesssannnee 23
Figure 51 Code Analyser COMPONENL..........ooiiiiiiiiiitieeee bbb eeeeseebeee e eeeees 24
Figure 6 License assistant COMPONENLS...........oovvvviiuiiimmeeeeeeeeerier e e eeeraa s 27
Figure 71 RepOSItOry COMPONENTSuutiiiiiiiiiiiieieeeeeeee it e e e e e e e e e e e e e e e s rmmme e e e e e e 28
Figure 8 Browsing&QUErying COMPONENT.........iiiiiiieeeeeeiiiceeeiie e e e e e e e eeeereene e e 31
Figure 9i Frontend COMPONEIL..........uuuiiiiiiiiiiiiieeeiiiiie et e e e e e e e e s emr e e e e e e e e e e e e e e e e e 33
Figure 10 Linked data access point COMPONENL...........ovieeiiiiiiicie e eee e e e e eeennees 35
Figure 117 ANNOtatioNS COMPONEIL.uuuiiiiiiiiiiiiiieieeereee et e e e e e e e e e e e e e s s s rmme e e e e e e e e e e e e 36
Figure 12 Crawling and Code ANAlYSIS.........ccooeiiiiiiiiiiiieeeee e eeeee e 38
Figure 13/ License analysis and storing of resutt the semantic store.........................4 40
Figure 14i Searching of software entities and visualization of their properties............ 41
Figure 151 Crawling SEQUENCE AIAQIamM..........uuuuuiiiiiiiiiieeeirieieeieeeeeeeeeee e e e e e s eeeseeeeaeeeaeeens 59

WP21 Upper model and architecture O markos Consortium Page6 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

Figure 16
Figure 171
Figure 18i
Figure 19
Figure 20i
Figure 21i
Figure 22
Figure 23i
Figure 24i

Figure 25i

Code analysis sequence diagraml........ccooeeeeeeeeiiieeeieiee e eeee e enneaeaead 61
Update semantic store sequence diagram............ccooeeviemmreeeeeeeseiinninnnee 64
Check licenses sequence diagraml..............uuuueeiiccceeeeeerernnninaee e e e e eeenannn 65
Querying by metadata sequence diagraml..............uueiiiccceeeeeeennnnnnanneenss 66
Querying by interface sequence diagram..........cccoeeeeeieeeeeeiiiiiiiie e e eeeeaans) 638
Entity visualization and browsing sequence diagram.............ccccoovvieaeeennnn. 70
Analyse licenses sequence diagram..............cooevvvvimemeeeeeeeeeeeeeeii e 72
Metadata change notification segae diagraml...........ccccceeeeveeeiiieenneeieeeeenn. 73
Downstream notification sequence diagram...........cccoeeeeeivieeeiiiiieeeeeeeeeeee, 75
Crawler configuration sequence diagram..........cccoeveeeiiiiiecceeeeeeeeee e 77

List of tables

Table 1i Hardware and software requirements of MARKOS components.................. 18

WP21 Upper model and architecture O markos Consortium Page7 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

1. INTRODUCTION

The primary goal of the MARKOS project is to realize a prototype of a software system
I the MARKOS platformi providing an integrated view on the Open Source projects
avalable on the web, focusing on functional, structural and license aspects of the
software code released by the proje®dtsARKOS wants to offer todevelopersand
analystsa solution for choosing the Open Source components more suitable to their
needs, tolearn how to integrate or extend them aimd generalaims to fostereasy
adoptionof Open Source Software

The present document reports the-keyel architecture of the MARKOS platform. The
main functional componentsnplementing theMARKOS services aredentified and

their functionalities are described in terms of offered and required interfaces and
interactions between these componehmsparticular, 1 is described how the software
code of the OS projects (g retrieved from the forgegii) analysé, (iii) stored andiv)
consumed by endsers.

The architectural choices made at design time are based on the user requirements
reported in the deliverable D1.1.]3, which have driven the definitions of component
functionalities and their interactions.

According to the development approaeldoptedn the whole project, the design of the
MARKOS platformis defined using an incremental approach. Tfoeee the man goal

of the reported top level architecture is to describe a limited and well defined set of
interfaces and interactions to satisfy the user requirements scheduled for the first period
of the project, i.e. for the sprint.1Actually, the described interactions and interfaces
include alsofunctionalities that will be implemented in successive spribtg, the
definition of these functionalitiewill be improved sprint by sprintlt cannot be excluded

that during the project some changesild be applied also to the architectural choices
done for sprint 1A comprehensive design of the MARKOS platform will be described

in the next release of this deliverable.

The approach adopted to describe the MARKOSI¢opl architecture is based on the
existing literaturgl4][5][6] and on previous experiences in other EU projesushas
SLA@SOI [8] and NEXOFRA [7]. The architecture reportdtere has the following
objectived5]:

- It serves as the blueprint bdtr the system and the project developing it.

- It defines the work assignments terms of component functionalitigbat must be
carried out by separate design and implementation teams.

! The development approach is also described in delivexble1a[2]

WP21 Upper model and architecture O markos Consortium PageB of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

- ltis a vehicle for early analysis to make sure that the desigoagpwill yieldto
an acceptable system.

- It is the artefact that holds the key to pdseployment system understanding or
mining’ efforts.

The UML notationsareused to describe the architectuspecifically, the contents of the
deliverable are arranged &llows

- The assumptions driving the definition of the 4epel architecture are reported in
section2.

- The context of the MARKOS system is descriliedection3, through a high level
conceptual viewdepictingthe functional components and the flow of meaningful
data characterizingOS projects and software. The meaningful data are the ones
gathered from théorges on the web that fully qualifies the analysed prejact
describes their code structure and licenses information, managed by the MARKOS
system and consumed by the arsds.

- A comprehensive view of the components and their deployment schema to locate
them on physical or virtual machines described by means of a deployment
diagram, reported inestion 3. It shows the connections between componants
the communication protocoised

- The data exchanged by the components are described by means of class diagrams,
reported in sectiod. The goal is tqorovide an UML representation of some piece
of information that will be more deeply specified by the MARKOS ontdlogy

- The scope of each single component is described by méansponent diagrams,
reported in sectiorb. Each component is described in terms of its required and
provided interfaces, and it is considered a blagok, asthe internal design of each
component is documented by other deliverables of the project.

% Softwarearchitecture mining is the practice to check the adherence of the implementation of a software system
to its design. Designers needs to checkthat an implementationhave beenfaithful to design;
developerAnaintainerseed to be able to understand existing source code. Architectural mining closes both
of these gaps by pulling out the relationships within an implementation, and inferring the existence of high
level abstractionsorresponding to design elemefitSs].

*The MARKOS ontology is des MMARKD® @ntology (initile. del i ver abl e

WP21 Upper model and architecture O markos Consortium Page9 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

- The interactions between the defined components, needed to implement the
MARKOS features, are described by means of sequence diagrams, reported in
section6.

In the appendixes of the document are reported architectural details to describe the
invocation mechanisms of the offered functionalities, the communication protocol, and
the expected inputs and output for each provided opergiippendix A: Component
interfaces in detai)s Detailed sequence diagrams alsoprovided to better qualifthe
functionalities in terms of interactions between componéippendix B: gquence
diagrams in detaijs Finally, the mapping between the user requirements aad th
sequence diagrams provides a rationale for the applied chdipper(dix C: User
Requirement$ Sequence diagram mappjng

WP21 Upper model and architecture O markos Consortium Pagel0 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

2. ARCHITECTURE DEFINITI ON DRIVERS

The main goabf the top level architecture of MARKGQS to design a limited and well
defined set of component functionalities satisfying the user requirements scheduled for
the first period of the project, i.e. for the spriftBesidessprint 1functionalities, further
functionalities have been defined when the following two conditions are met: 1) they are
useful to provide at least a high level view of how theecioyes of the MARKOS
project will be met and 2) they implement stable user requirements already scheduled for
sprints 2 and 3, i.e. scheduled for the first year of the project.

The architecturelescribed in this documents apnr odgirne s s 6 bevexterided |t w
by designing new features according to the consolidation of the user requirements, which

will occur every sprint with a higher expected incidence for the early spfihés.

adopted methodology and techniques guarantee a good level of confidetioe
architectural choices made so fagwever the choices made in the current version of

the architecture can change as a consequence of changing user requirémehis to

the adoption of an incremental development apprdattenvisioning the continuous

evolution of the produced artefacts

The definition of the MARKOS architecture is based on the principles of goodness
defined in the scope of NEXGRA project, which defines a quality model for the
architectural design of software systefhk According to the quality attributes defined
there, when multiple architeural alternatives were identified at design time, the solution
considered mosgfficientand, in order of priority, the mostasy to realizehas been
adopted The most efficient solution for each component is the one that mirsithee

time requested tperform its tasks, the amount of disk space requested to store internal
data enabling its normal operation, and the overhead of communication with other
components to exchange requested and provided data. When the simultaneous
minimization of these threparameters has been not possible because of conflicting
condi ti ons, -oftambng thdrbas be@n chosedildeecriteria to define the
best tradeoff assigns the highest priority to the minimization of #weecutiontime
requested to perform theasks, secondly to the minimization of the overhead of
communication with other components, and finally to the minimizaifdhe amount of

disk space required.

Accordingly, when specific MARKOS components presentguite high hardware
requirements, lik€€PU throughput or amount of requested memory, it has been decided
to run it on a dedicated serierminimize the execution timeven if such choice do not
optimize the efficiency of the communication between components. When possible,

* The NEXOFRA quality model definet he ease of realization, al so said
constructing the systemo.

WP21 Upper model and architecture O markos Consortium Pagellof 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

more components run on the same server and in the \sered machine so that most
efficient communication protoce(data exchanges) can be used.

Other quality attributes la been taken in consideration, like theodifiability of the
system,which is one of the most important quality attribsiteonsidered during the
design. Indeed, the adopted incremental approach implies continuous changes to the
architecture and a highly modifiable system is strongly recommended. According to the
adopted quality model, the modifiability is a complex attribute measured in terms of
extensibility of capabilities.e. the ability to add new functionalities with lesgact on

the overall system, theeletion of unwanted capabilitiethe portability, i.e. the ability

of the system to run under different executing environment anesitreicturing i.e. the

ability to support architectural configuration changes, sashrationalizing system
services, modularising, optimising or creating reusable components.

The reusabilityof some of the main components is a highly desired aspect for
MARKQOS, even ifit is not mandatory. Thus, one secondary goal of the MARKOS
architectue is to reduce as much as possible the coupling between components, while
keeping each component as much as cohesive possible. The reusability of the
components is an aspect that will be further investigated during the next steps of the
project.

The secuity concerns of the MARKOS system have been not investigated yet. The
topics related to the authentication and authorizations ofusers and, in case, data
encryption will be investigated during the second phase of the project, when the non
functional rejuirements of the system will be clarified.

The possible constraints of the infrastructure that has to host the MARKOS trial
platforn? havebeententatively ealuated in terms of the numberretjuiredservers and,

for each of them, the amount of thequred computational resources and disk space.
Moreover, the technologieseededfor the correct operation of the componentseha
been consideredhey are reported ifiable 1. The objective of such investigation is to
verify the feasibility of the demonstrator and to gather any technical requirements from
the infrastructure provider The result of such investigation leads to a gross grained
estimation of the hardwareqairementdo executeMARKOS componentsprovided by

the component owners and submitted to the infrastructure profadem acceptance
validation. The hardware requirements are reported in sektion

® The MARKOS trial platform is the demonstrator that will be developed to prototype the MARKOS system.

® The infrastructurés provided by GEEKNET.

WP21 Upper model and architecture O markos Consortium Pagel2 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

3. TOP LEVEL ARCHITECTUR E

The MARKOS top level architecture specifies the offered and required interfaces of the
main components needed for the implementation of the MARKOS platform and the
interaction expected betweethese componentso satisfy the user requirements
scheduled for the sprint &nd the most stable and well defined user requirements
scheduled for the sprints 2 and 3

Web of Data
MARKOS User

G MARKOS

L U
Linked Data
Access Point

MARKOS Frontend

40

[Browsing&Querying

i

MARKOS Repository
e

Semantic
Store

Code Analyser ‘

Code
Analysis
Database

LicenseAssistant

Crawler

o LR
Metadata
Database

1 J

Forges / Metaforges m WEB
L
&

Figure 17 Functional MARKOS architecture view

In the scope fothis document each component is considered a Hlagk so that no
architectural details are described for them. Their internal architectilte be
documentedh nextprojectdeliverables

WP21 Upper model and architecture O markos Consortium Pagel3of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

The context of MARKOS is shown in the functional view of the M&BS system in
Figurel. It reports the functional components developed in MARKOS. The arrows show
the flow of the significant data managed by MARKOS, that is infammaaboutOS
projects and released softwarexisting on the web, analysed by the platform and
consumed by the engsers.

The diagram desnot show neither the details of interactions between components, nor
the flow of 6secondaatigndata on dquery solanitteddoyusdrsi k e ¢
Such details will be examined in depth in the next sections.

A desired characteristic othe MARKOS components is their ability to work
independently fromeach otherto perform their tasks even if other components a
temporarily unavailable. To allow such capability, some components use internal
repositories to store the data required to perform their tasks. It imghettesicohesion

of componentswhich leads to a greater flexibility of the system operationshat
expense of a higher data redundancy.

The OS projectand softwaralataare actually distributed on several existing forged
metaforges on the web.These sitesare the information source for the MARKOS
system. Sourcefge [16], BerliOS[17] are just some example of existing forgesich
are crawled by theCrawler component. TheCrawler retrieves projects metadata,
compliant to theDescription Of A ProjectOAP) format, which contains information
like project name, description, URI of source code repository, and so on.

The data gathered by th@rawler are stored in ra internal repository, the Metadata
Database, and made available to ede Analyser The Code Analyser uses such
metadata to identify the projects to be analysed and the specific repositories from which
to download the project resources, like source codefiguration files and all other
useful data. For each project, tBede Analyser retrieves the resources from the forges,
analyses the structure of teeftwarecode identifies the adopted licensasd stores the
result in an internal database, thed€E&\nalyser Database.

The Repositorycomponent retrieves the data prodlibg the Code Analyser, translate
them in RDF triples and staéhem in theSemantic StorelheSemanticStore is a third

party componentmanaging RDF graphs andallowing the exeation of SPARQL
gueries. Thdrepository also provides features to safely interact wittsdmeanticStore,

in order to guarantee the consistency of the data provided to thesersl Indeed,
interleaved readvrite operations on thé&emantic Store could lead to inconsistent
retrieved data. Thus, while read operations are allowed directly dBethanticStore,

write operations are always mediated byRepository. Furthermore, ti@odeAnalyser
Database is also a support tereatethe Semanic Store, without going back to the
forges. For example, this is the case where it is required to recover from a disaster on the
SemanticStore or when a restructuring of the Semantic Store is decided to take into
account new requirementshis feature igarticularly useful during the implementation
phase as the ontology changes over time as the project progresses ahdilitiagef

the SemanticStore could occufrequently.

When theCode Analyser recognisea dependency of the analysed softwemdefrom
other software released by a previously analysed prajegtieries theéSemanticStore

WP21 Upper model and architecture O markos Consortium Pagel4 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

via the Browsing&Querying component to retrieve théescription of the related
software

The Browsing&Querying componenprovides a set of utiliés to extract infomation
from theSemanticStore and to translate the data franfow level representation &DF
triples toa higherlevel representation in terms of Jagects.

The LicenseAssistant notified by theRepositorywhennew dateareavailable for one or
more projects, retrieves the daia the project licensesom the Semantic Store and
analyses the compliance of sudenses. The result elsostored in théRepository.

Finally, the results of the code analysis and licearsalysis are available to the end
users which can consume them via two channels: Fhentend and thé.inked Data
AccessPoint.

The Frontend provides aveb basedgraphical interface to allow human users to
formulate queries in a human understandable fdahan it submg the queries to the
Repository. The interaction with tHRepository is mediated by tigrowsing&Querying
componentin order to free the Frontend development from the complexity of the
adopted semantic technologies (RDF and SPARQ@hgn, he Frontend visualize the
code structure and licensing information matching the submitted queries.

The Linked Data AccessPoint provides toexternal softwaretools an access to the
SemanticStore in orderto connect and share the MARKOS semantic knovéealy the
semantiaveb([3].

Each component defines at least one interface in a common andtamelardized
paradigm, i.e. REST oayainterface definition.

The schema to deploy the MARKOS components described aboskoived inthe
UML diagram ofFigure2. Such deployment diagraprovides a higHevel view ofthe
interactions betweeall MARKOS componentspresentingechnicaldetils not shown
in the functional viewof Figure 1. The diagram reports all th@hysical or virtual
machines (nodesjhe deployed components and their provided aadired interfaces,
drawing an overall picturefdheir relationships. In some casé¢he functional blocks
depicted inFigurel result in several components deployeddifferent nodesVhen this
happens, the mapping between deployable components and the corresponding functional
blocks is described as soon as the components are introdineedetailed description of
each component and related interfaces are repamtesection5, while the possible
interactions to implement the target functionalities are reported in se6tiand
examined in depth iCAppendix B: quence diagrams in detdils

The nodes can be of two differenty p e s : 6deviced node, whi h
virtual machi ne; Oexecution environment
providing the runtime for components, like Java Virtual Machine or Web Server. Each

device can host one or more exegntenvironments.

c
0

WP21 Upper model and architecture O markos Consortium Pagel5of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)
Linked Data Consumer HTML Browser II
|) ;
HTTP/Linked-Data , ! HTTP/HTML ' HTTP/HTML
MARKOS System ! | !
J |
! 1
<<device>> i ! :
Storage Node *
<<device>> : : |
<<execution environment>> Service Node , ! s
Storage Process L .
<<execution'environment>> 1 :
<<webservice>> g O Web Server | ! i
Semantic Store N A4 i ;
ISemanticStore <<webapp>> §] : !
HTTP/Rest LinkedData | :
1
HTTP/Rest \/ HTTP/HTML :
1
<<webapp>> 1
<<device>> Front-End N !
Code Analysis Node enseAssistantWébApp
1
~ A ;
<<execution environment>> f
Code Analysis Process /) AV4
HTTP/Rest IBrowsingISearching <<webapp> >
<<library>> $] LicenseAssistantWebApp
() Browsing&Queryin
N g ying
IBrowSing HTTP/Rest <<library>> g]
= Browsing&Querying
<<webservice>> §]
Code Analyser
HTTP/Rest
HTTP/Rest HTTP/Rest IFrontend
n O = O) HTTP/Rest
O -/ IRepositoryStoreWsS
ICodeAnalyser
ICrawler
<<exeqution efivironment>>
Repository Process)
<<device>> 1 ository%\
ling N
Crawling Node HTTP/Rest
” > 7 <<webservice>> g <<library>>
<<execution environment>> HTTP/Rest RepositoryBuilder LicenseChecker
Crawling Process
<<webservice>> g] \(O/
Crawl
G HTTP/Rest
IRNotification

Figure 27 Deployment diagram of the MARKOS system

The most demanding components of computational and/or storage resources have been
deployed on dedicated device nodes. Accordingly, four different device raodes
required to deploy the whole MARKOS platform, as described below:

The Crawling nodehosts theCrawler componentrunning in the Crawling Procega

web server) It is a living process continuously running to discover new or updated
projects on the webwhich implies a intensiveusage of hardware resources. The
Crawler is a RESTful service providing the ICrawler interface used byCide
Analyser.

The Storing nodéhosts theSemanticStore, running in the Storage ProcgssJava virtual
machine) The Semantic Store requires a big amount of disk space to store code and

WP21 Upper model and architecture O markos Consortium Pagel6 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

license analysis results. It is a RESTful service providing the ISemanticStore interface to
allow data storing and retrieving operations.

The Code Analysis nodbosts theCodeAnalyser running in the Code Analysis Process
(a Java virtual machine) The Code Analyser requires an instance of the
Browsing&Querying component to retrieve data from tBemantic Store. It is a
RESTful service providing the ICodeAnalyser interface used byCtiagvler and the
RepositoryBuilder components.

The Service noddosts two execution environments, the Web Server and the Repository
Process. The former can be any web semviich allows the deployment atandard
Javaweb applications. It hosts the Front® the LicenseéAssistantWeb App and the
Linked Data AccessPoint which areall web applications. Thé&rontend allows the
navigation of t he pr oj elicensefAssistantdMeb Appt r uct u
performs the license analysis and allows the vigaabn of the results of such analysis.
The License Assistant Web App is a module of the LicensAssistantfunctional
component reported ifrigure 1. The License Asstant Web App is triggered by the
Frontend by means of standard http/html requests at the level of web brdwsendt

user navigate from thierontendweb interfacdo theLicenseAssistantwebinterface by
selecting the components resulting from a quemg asking for the license analysis
functionality. The Linked DataAccessPoint is a web appwhich allows other software
tools the Linked Data Consumers, to access the MARKOS semantic knowledge. Finally,
the web server is also responsible for the instantiation @dnbwsing&Querying library

used by thd=rontend to query th8emanticStore. TheBrowsing&Querying component
provides two interfaces, ISearching and IBrowsing, both of them accessed by the
Frontend via JAVA method invocations.

The other execution environment on the service node is the Repository Picess
standard Java web server, whéne Repository Builder a@hthe License Checker are
deployed. TheRepository Builder is a web application, which is a module of the
MARKOS Repository functional component irigure 1. It manages alithe write
operation on theSemanticStore and it is responsible for the consistency of the data
stored in thereBoth theCodeAnalyser and theicenseAssistantWeb App interact with

the Repository Builder to store, respectively, the code analysis aoen$e analysis
results in théSemanticStore. TheLicenseCheckeris a library deployed as module of

the LicenseAssistantfunctional component reported kigure 1. It is responsible to
perform the 6qui ck’ofahe doftwhie campodents iesuléng faen ¢ h e «
the code analysis.

"More details on the 6quick and dirtyoé | i5B8ense check

WP21 Upper model and architecture O markos Consortium Pagel7 of 79

FP7<317743> < MARKOS >

D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

A coarsegrained estimation of the hardware requirements of the MARKOS components
has been provided by the component owners sugimitted ¢ the infrastructure provider

for an acceptance validatiolt.is a very generous estimate based on the possible internet
traffic and amount of data to manadée actual requirements depend on many factors
which are currently unknown, such #® real number of users and daily traffibe
number of crawled projects and the amount of data produced by code and license
analysis tools for each project.

Disk Networking Major software
e EPU | el Space | (download/day) tools
Linux 100 MySQL, Python,
Crewes (Debian/Ubuntu) nd. | 4GB GB 2GB Pyramid, Apache
MySQL 5.x,
. Apache Tomcat
Code Analyser Linux 4 core| 8GB 512 4 GB 7.x, Perl
(Ubuntu) GB .
interpreter, Java
7 SDK
License Assistant Linux 256
Web app (Ubuntu) 8 core | 24 GB GB 2GB Java 7 SDK
. . Java 7 SDK
Repository / Linux 256 '
Semantic Store (Ubuntu) 8 core | 24 GB GB n.d. Apach(; Iomcat
Java 7 SDK,
Apache Maven
3, Web
Linux 2 GB (Apggr?éa+r:)er;cat
Frontend (Ubuntu) 8 core | 16 GB | 100GB . l(;elstill\ga) or Jetty or
q y GlassFish or
JBoss), Apache
with HTTP proxy
module
Browsing&Querying | OS independent | 2 core | 2 GB n.d. n.d. Java 7 SDK
. Java 7 SDK,
Linked Dat_a OS independent | 4 core | 8 GB n.d. ~10k Apache Tomcat
Access Point request /day 7 x

Table 17 Hardware and software requirements of MARKOS components

The list of the major software tools enabling the correct execution of the MARKOS
components is provided as wélhe hardwarend softwargequirements are reported in
Tablel.

The Frontend, License Assistant Web App, Linked Data Access Point and
Browsing&Querying components are all deployed on the same node (the service node).
As they share the same tesare, the unified proposal for hardware requirements of such
node is: 12 core CPU, 32 GB of RAM, 2 GB of downloads per day. The software
requirements of the unified proposal match the software requirements of the Frontend in
Tablel.

WP21 Upper model and architecture

O markos Consortium Pagel8of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

4. INFORMATION MODEL

The Information Modél shown in Figure 3 below defines themain types of data
exchanged between the MARKOS components. It provides amitial UML
representation of information that will bleetter and completelgpecified by the
MARKOS ontology to be described in the deliverable D2.2/&hile the MARKOS
ontology will be specified in OWL and the managed data stored as RDF triples, most
MARKQOS componentsill be implemented in JAVA, anavill use JAVA objects to
represent the exchangetita A corresponding Java Class will represent each OWL
class.The alignment of the two data representations will be guaranteed by the automatic
generation of the JAVA classes from @Q&VL ontology.

There is a number of tools like JAORO], Jenabearjll], Jastor[12], OpenRDF
AliBaba [13] that are able to create JAVA beans based ontology model and RDF data.
Nevertteless,because of high automation of class generation process to reach the final
form of JAVA class, some further processing and implementation is requiresl.
implementation will introduce and adjust functionality that will cover all requirements
defined by MARKOS system components.

The Information Model showin Figure3 focusesonly on thetypes of dataeferredby

the otherdesignUML diagrams. Indeed, it reportise entities and their relationships

directly used as input and output parameters of the operations provided by components,
which are described in the UML diagrams in the next sections. All the related entities
indirectly involved in the data excharggare reported as well, each time they help to
improve the understanding of the model.

Most of the defined classes and attributeere a representation of the domain terms
defined in the MARKOS glossary, reported in the appendix A of the deliverable D1.1.1;
when possible, the names used in the glossary are preserved in the Information model for
traceability reasons. When the names from the glossary are not preserved in the
Information Model, a mapping is provided to easily identify the definition of eadty.ent

In the few cases in which an entity of the model is not defined in the glossary, a
definition is provided in this section.

According to the adoptemhcremental development approathe reported Information
Model focugson data involved in the compent interactions defined fahe sprintl.
The modekouldbe continuouslenrichedwith new entitieduring the project, when the
interactions between components willfbgherdefined.

The relationships among the entities of the Information M@del described in the
following section The italic font is used to highlight the named entities of the model

8 Synonymous of Entity ModehiMARKOS

WP21 Upper model and architecture O markos Consortium Pagel9of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

when they are mentioned for the first time. It is also used to highlight the domain terms
from the glossary that are mapped to the reportedesatiti

CopyrightLicenseTemplate
[1

1

*

0..* |- releasedFile

- containedElement| 0.*
FileSystemElement CopyrightLicense Entity
- location : URI - isHeuristicallyCompliant : boolean - description : String - .
- name : String 1 o] complianceArgumentation : Argumentation| - creationDate : Date FileRepository
? 1 1 - tag : String[0..7] - weblinterface : URI

- location : URI
| !

| NonCodeFile I | ObjectCode I ISourceCode 0.
L 1 I | L 1 1. 1
= 1
0:.% 1.
= SoftwareEntity | SoftwareRelease SoftwareProject
- name : String Hll ~ name : String . - name : String

b - subject | - version : String | - version : String 0.. 1l - webSite : URI
MakeFile I I ConfigurationFile I I DependsOn I—I
L 1 [1 [1+ _ object .

ProgramminglLanguage

- name : String

r) 0..1
- ownedOperation[operation | e ¥ :
= ownedOperation Library I Package
' [| I
-
0:.%

1 API

- implenentedOperation

Method |*
- invoked

- requiredinterface |0..*

*

- providedinterface [|nterface |
I]
0-* Jo.1

0.2*

- implementedinterface

Figure 37 MARKOS information model

Every information in the model is aantity. An entity is the most generic data type
managed by MARKOS components and all other data types are derived from it (they are
specializations oEntity). Each entity has at least a description, a creation date and a set
of annotations (tags), which enable the communication and the exchange of experience
between usersThe main specialized entities are theftwareProjec{glossary domain

term Project) and SoftwareEntityentities. A software project releases a collection of
created or maintained software and software artefacts, with the constraint to release

at least one software artefact. Software artefacts are concrete manifestations of any
software (i.e. located in time and space), and they are written in a specific
ProgrammingLanguageDifferent software artefacts released by a software project can
be written in different programming languages; 1software artefacts are any other
concrete maifestations like binary executable files, tables in a database system,

WP21 Upper model and architecture O markos Consortium Page20 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

development deliverable or weptocessing document, images, configuration files, and
SO on.

The artefacts of a software project are stored FileRepository A file repository is

defi ned as fa data structure possibly i1in a
server, that may contain: a) A set of files and directories; b) Historical record of changes

in the repository; c) A set of commit objects; d) A set of references to doohjects,
called heads. 0 Thus, a f i |ISeurceCogeObjectCoder y c an
andNonCodeFile All of them areFileSystemElemesit, t hat i1 s fna data s
a directory) managed by a f i lare maifestatiansno . S«
of one or more software entities.

A non-codefile is any software file that is neither a source code nor an object code.
MakeFiles andConfigurationFiles are norcode files. Make files are used by a Make
utility, that specify how to autoatically build executable programs and libraries from
source code. Configuration files are used to configure the initial settings for some
computer programs.

A software project can release one or more software entities whose aggregation is called

a SoftwareReleaseA software re |l e as e S defined as t he
documentati on of f i ciSinteboftwanre s hneabssrastentity,thera pr o
the software release can contain both abstract entities and artefacts (which are concret
elements). All the artefacts released in a software release are file system elements.
Typically, more than one software release can be produced by a software project.

A software entity is an abstract entity specialized by the concrete entitiesary,
SoftwareClass Package,Operation and Interface It can depend on other software
entities and such dependency is representedé¥dsOn(glossary domain term
(software) dependengyThe dependency relationship implies that the source code of the
subject software entity needs the source code of dhgect software entity to be
interpreted or compiled.

Each software entity can be protected by copyright. Then, it is associated to a
CopyrightLicensewhichi s fAany i ndivi dual | ilegpad enitye , wi t
the | icensor, grants rights to another | eg
information on the compliance of the license with which the software entity is released

and the licenses associated to any other software entgex$ loy the former. Such
information is heuristically calculated and reported by isHeuristicallyCompliant
attribute. Furthermore, an argumentation is provided to justify the result of the
compliance analysis, reported by complianceArgumentation attribute.

A copyright license is an instantiation of GopyrightLicenseTemplateA copyright
license template is a form license like, for example, GPL or BSD.

A library represents an aggregation of software entities released by a project.

An operation is a behavioal feature, typically declared in anterface, which can be
implemented by zero or moidethods and eacimethod can implement zero or more
operations. Amethod can invoke or be invoked by othegthods.

WP21 Upper model and architecture O markos Consortium Page?1of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

An interface represents a declaration of a seipefations and can be implemented by
software classes @omponers.

A component is a modular part of a software system encapsulating its contents and
which defines its behaviour in terms of provided and requirgdrfaces. In some
programming languages a@rmoponent is also a software class; in other programming
languages several software classes may substitutectimpgonent, like a software class,

can provide and/or require zero or mangerfaces. On the reverse side, iaterface
provided by a&componentan be required by zero or ma@mponents.

Interfaces can be aggregated ARls, which are software packages containing only
interfaces.

WP21 Upper model and architecture O markos Consortium Page22 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

5. MARKOS COMPONENTS DESCRIPTION

The details okvery component of the MRKOS systemaredescribedn the following
sections The purpose of each component, their provided interfaces and the interfaces
requiredto other components to fulfil thretasksare reported

The component diagrams complement the descriptions by reporting the offered and
required interfaces in a@phical notation.

For each interface, the communication protocol to use for interactions is specified.
The technical details for the AppendixcAati on

Component interfaces in detdils wher e t he offered operation
input, output and invocation mechanisms according to the communication protocol used.

5.1.Crawler component
The Crawler is the main entpoint for projects information into the MARKOS system.
The Crawler is responsible to fetch information about open source projects from forges
and metdorges. Such information has a twofold goal in MARKOS:

- Provide as much detail as possible to the finat tisrough thd-rontend

- Providethe URL forthe repository of the code to thedeAnalyser.

<=interface==
=<rpst==
ICrawler

==websenice=> g]
Crawler [~ ==-- -

+ retrieveletadata(batchlD - int) List=CrawlerProject=
+ sefConfiguration(paramName ; String, value : String) : boolean
+ getConfiguration{paramName . String) ; String

HTTH/Rest

ICodeAnalyser

Figure 47 Crawler component

The Crawler will consist of several processes fetching anghno@essing information,
browsing repositories looking for new projects releases. When a batch of such
information about projects or a list of projects having new reldaseady, the Crawler

will notify the Code Analyzer using the ICodeAnalyser interface.

WP21 Upper model and architecture O markos Consortium Page23of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

5.1.1.Provided interfaces
ICrawler interface
The ICrawler interface is used by the Code Analyser to fetch data about the projects.
The Crawler will offer some parameters, waliwill prioritize its processes in order to
optimize the use of resources such as bandwidth, CPU time, etc. The Frontend will use

the ICrawler interface to allow the administrator to read and set configuration
parameters.

5.1.2.Required interfaces

The Crawleruses ICodeAnalyser interface to notify the Code Analyser when new
pr oj ect sabe avadablg idemtified by batchiD.

5.2.Code Analyser component

ICrawler
HTTP/Rest
) Code Analyser &]
IBrowsing
I
L —
|
< <interface>>
ICodeAnalyser

+ getProjects(lastUpdate : Date) : List <Project>

+ analyseNewProjectReleases(projects : List<CrawlerProject>) : void
+ analyseAprojectProvidedByUser(srcArchiveURL : int) : Project

+ notifyMetadataChange(projects : List<CrawlerProject>) : void

+ notify(batchID : int) : void

Figure 517 Code Analyser component

The general goal for the Code Analyser is to extract from software repositories
information about software artefacts to be used for supporting their retrieval in the
context of a code search activity. The code search can be performed at different levels of
granularity, e.g., entire packages/libraries able to fulfil a given piece of functionality, a
source code file/class, but also a small source code snippet/fragment that can be relevant

WP21 Upper model and architecture O markos Consortium Page?4 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

for a specific task, e.g. a snippet useful to implement a particaiing algorithm.
Moreover, the Code Analyser must extract and process the source code licensing
information that will be usebly License Assistartb determine whether the discovered
artefact is compliant from a legal point of view. In addition, it iseseary to extract
dependencies, to identify requirements necessary to be fulfiled when one wants to use a
discovered code artefact, and to determine whether the dependencies would create legal
issues, e.g., because of interconnection with artefacts thatca compatibldrom a
licensing point of viewwith the system.

Figure5 reports the component diagram showing @aele AnalyserThe focus of the
component diagrams on the interfaces (i) required and (ii) exposed to the other
MARKOS components. In particular, t@ode Analysewill mainly communicate with

the folloving MARKOS components:

- The Crawler, with which the Code Analyserexchanges information about the
software projects to analyse.

- The Repository to which the Code Analyserprovides information about the
analysed projects.

- The Browsing&Querying used by theCode Analyserto retrieve information
needed to analyse softwgrjects, like project dependencies.

5.2.1.Provided interfaces

ICodeAnalyser interface

This interface is used bthe Crawler to notify the Code Aalyserabout new project
releases to analyser about changes in the metadata of already indexed projects.

It is also used by thRepositoryto retrievefrom the Code Analysethe new available
datato be stored in the Semantic Stofigne Code Analyser will provide the required
information as a list of new software projectBhe communicationbetween the
Reposiory and theCode Analyseiis just oneway, i.e., theCode Analyserexposes a
service to th&kepositorywhile the opposite is not needed.

5.2.2.Required interfaces

The Code Analyseexpects from th&rowsing&Queryingcomponent (and in particular
from its inteffaceIBrowsing), information needed to perform dependencies analysis on a
software project. In particular, when tkimde Analysefinds a dependency between a
file A of a project under analysis and a file B belonging to an external proje@othe
Analyser asks to théBrowsing&Queryingcomponent the provenance of this file, or, in
other words, the software project to which the file belongs. This service will be provided

WP21 Upper model and architecture O markos Consortium Page25 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

in the IBrowsing interface by the method getProjectByReleasedFile(releasedFileName :
String) : Project. The output of this method can open the two possible scenarios depicted
below:

1. The project to which the required file belongs is retrieved by the
Browsing&Queryingcomponent, and thus theéode Analyseroes not require
any further information.

2. The project to which the required file belongs is not identified by the
Browsing&Queryingcomponent. In this case, tHéode Analysermarks the
dependency as fAdAnot resolvedo and will
the Browsing&Queryingcomponent

5.3.LicenseAssistantcomponent

The aim of License Assistant components is to help developers to efficiently and cost
effectively asess open source licensing issues and minimize their legal risks. Our basic
idea for providing software tools which can help developers to effectively analyse
licensing issues in a legally adequate manner, without placing unrealistic demands on
their time @ presuming too much prior knowledge of copyright law, takes apnenged
approach:

1. A fully automaticLicense Checkewill use a configurabldegal profileto make a
first, rough analysis of licensing issues. The legal profile expresses simplifying
assumptions about copyright law and can be configured to minimise legal risks. The
legal profile is applied uniformly to all the software used, without regarétional
differences in copyright law. The idea is to err on the safe side, by identifying and
signalling potential copyright issues and explaining the causes of the issues.

2. If any issues are signalled by the License Checker, the developer can cheitiser to
resolve the cause of the issue, for example by choosing to use another license for his
own software or another component with a compatible license, or to invest time in a
more thorough investigation of the issues, using an interdatease Assisint Web
App. It provides support for constructing, visualising, evaluating and comparing
competing legal arguments and theories.

The figure below shows the License Assistant components along with the application
programmer interfaces (APIs) they provided the APIs upon which they depend.
There are two License Assistant components,Libense Checkera Java library, and

the License Assistant Web Apgp web application. The License Checker library is used

by the Repository Builder. The Repository Beilchotifies the License Checker of any
modifications to the repository. The License Checker checks or rechecks the licenses of
any software entities affected by the modifications and then executes a function of the
repository to store the results of theecks. The License Assistant Web App is a web
application providing developers direct access to the automatic License Checker tool in
addition to the interactive license assessment functionalities.

WP21 Upper model and architecture O markos Consortium Page26 of 79

FP7<317743> < MARKOS >

D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

The License Checker implements tiRNotificationinterface and the License Assistant

Web App implements thi.icenseAssistantWebAppterface. These two interfaces are

described next.

<<interface>>
<<java>>
IRNotification

-/
IRepositoryStoreWsS

+ softwareEntityChange(entityUri : String) : void

I

‘I

G HTTP/Rest

1

,’

<<library>> <<webapp>>
LicenseChecker LicenseAssistantWebApp
\
\
\

HTN(P/Rest
H /Rest \
\
J
=) F <<interface>>
ISemanticStore <<rest>>
ILicenseAssistantWebApp
+ analyseSoftwareEntity(softwareEntitylD : URI) : void

IRepositoryStore
+ analyseProject(projectlD : URI) : void

Figure 671 License assistant components

5.3.1.Provided interfaces

IRNotification interface

The License Checker Java library implements the IRNotification interface. The

Repository Builder uses the offerezbftwareEntityChangeoperation to notify the
LicenseChecker of new or modified sofawe entities in the repository.

ILicenseAssistantWebApmterface

The License Assistant Web App implements the ILicenseAnalyserWebApp interface

The interface consists of two operatioasalyseSoftwareEntitgnd analyseProjectfor
checking the licenses of a particular software entity or all the softwareesmrovided

by a project, respectively.

Page27 of 79

O markos Consortium

WP21 Upper model and architecture

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

5.3.2.Required interfaces

The License Checker uses the IRepositoryStore Java interface to store its results in the
MARKOS repository. The License Checker and the LicenseAnalyserWebApp both use
the ISemanticStorenterface to send SPARQL queries to the repository to retrieve
information about the software entities and their licenses.

5.4.Repository component

cmp components)

<<webservice>> &]
Semantic Store

\V/

<<interface>>
<<rest>>
ISemanticStore

+executeQuery(sparqlQuery : String) : List<Object(}>

7N
HTTP/Rest
E | IFrontend

HTTP/Rest

<<webservice>>
RepositoryBuilder

-

_- i HTTP/Rest
/X : ICodeAnalyser
<<interface>> :
<<rest>> 1
IRepositoryStoreWs :
= | g
S [IRNotification
N\ \V
<<interface=>>
<<java=>
IRepositoryStore

+ storeLicenseCheckResults(entity : URI, ok : boolean, explanation : String) : void
+ storelLicenseAnalysisResults(projectid : URI, resultGraphLink : String) : void

Figure 71 Repository components

WP21 Upper model and architecture O markos Consortium Page28 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

The Repository component is introducedé¢present the software layer responsible for
accessing the Semantic Store. The design of this component is based on the separation of
the functionalities associated with the building of the semantic repository and the
functionalities used for reading it®mtent. As a consequence of this assumption, the
reading of data is delegated to the Browsing&Querying component, responsible for
execution of SPARQL queries and processing of the responses. It hides the complexity
of RDF representation and builds Javaeol§ based on information retrieved from
repository.

The writing operations are delegated to the Repository Builder, which is a service
responsible for managing the process of building and provisioning the content of
Semantic Store. It communicates withethCode Analyser to harvest available
information concerning software projects. Then it translates this information to semantic
representation and stores it in the repository. It also enriches the information with the
basic license analysis results perfodig the Licence Checker component.

The Repository Builder manages the life cycle of the Semantic Store: building the
content, checking the consistency of information, submitting the reasoning process,
preparing the production repository for Frontend.

Sematic Store is a third party component.

Semantic Store is a RESTful web service component, which is implemented by a
standard Sesame SPARQL endp¢idt]. It allowsdata retrieval from the RDF store.

5.4.1.Provided interfaces
IRepositoryStore

IRepositoryStore is a Java interface allowing license analysis and license check
components to store the results of their processing in the Semantic Store. It is also used
by a web sevice IRepositoryStoreWS to implement the logic responsible for storing
relevant data.

IRepositoryStoreWs

This is a RESTfulservice exposing the IRepositoryStoirgerface allowing other
MARKOS components to store license analysis results through HTTBE lexgeests.

ISemanticStore

This is a RESTful interface which enables executiorSBARQL queries. It will be
implemented by the Sesame baSEtARQLendpoint.

WP21 Upper model and architecture O markos Consortium Page?9 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

5.4.2.Required interfaces

The Repository Builder component useshe IRNotification.softwareEntityChange
interface to signal the fact of a change of data related to a given entity. It aldbaises

ICodeAnalyserinterface to periodically retrieve project analysis data friv@ Code
Analyser database.

WP21 Upper model and architecture O markos Consortium Page30of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)

5.5. Browsing&Querying component

The Browsing&Querying component provides a set of ué8tto extract information
from the Semantic StoreAll provided information aggregatehe data in a higtevel
structure, represented by the entity model describeddtiord.

The component is designed to be a library supppthe fetching interactions from the
Semantic StoreTo facilitate its useit has been designed keeping in mind that it has to
be invoked like a local set of utilities; so, as enabling technoltayghas been chosen.

The component provides two different interfaces called I1Searching and IBrowsing, in
particular the ISearchingnterface provides a set of utilities that are used by the
Frontend, while the IBrowsing interface is used by the Frontend and the Code Analyser
It may be deployed in more than one node (each deployment representing a different

instance of the component).

<<interface>>
<<java>>
ISearching

+ searchByEntityName(namePattern : String) : List<Entity>

+ searchByEntityName(namePattern : String, eTypes : List<String>, lang : String, tags : List<String> ITypes : List<String>) : List<Entity>
+ filterBy(swEntities : List<SoftwareEntity>, eTypes : List<String>, lang : String, tags : List<String>, ITypes : List<String>) : List<Entity>
+ searchimplementationsBy/nterfaces(interfaceNamePattern : String) : List<SoftwareEntity>

I
1
1
: <<interface>>
|
1

IBrowsing
+ getEntity(entityURI : URI) : Entity
<<library>> 2] + getAllTags() : List<String>
Browsing&Querying E--)+ getProjectByReleasedFile(releasedFileName : String) : SoftwareProject
+ getlmplementationsBy/nterface(iface : Interface) : List<SoftwareEntity>
+ get/mplementationsByAPl(api : API) . List<SoftwareEntity>

+ getPercentageOfimplementedAPI(api : API, entity . SoftwareEntity) : float
+ getProjectsUsingSoftwareEntity(entity . SoftwareEntity) : List<SoftwareProject>
+ getSoftwareEntity Dependencies(softwareEntity . SoftwareEntity) : List <Dependency >

HTTP/Rest

ISemanticStore

Figure 81 Browsing&Querying component

5.5.1.Provided interfaces
ISearchinginterface

The ISearching interface is meant to query M&RKOS Semantic Storehiding the
complexity of theSPARQL queriesfrom the client. Suclsearching functionalitieare

WP21 Upper model and architecture O markos Consortium Page31of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

offered to the users by tHerontendcomponent.The Frontendwill provide a specific
search fornfor each type of query enabled by this interface.

IBrowsing interface

The IBrowsing interface offers methods to supploetretieval of additional information
about specific entities. For example a usehno is visualiang the description of an
entity, canask and obtaithe description of relateentiies. The related entities can be
referred either as thealues of the attributes of the first entity (.e. direct relationship), or
as thevalues ofinferred properesof the first entity (.e. inferred relationship).

5.5.2.Required interfaces

Since theéBrowsing&Queryingcomponent has to retrieve information from Semantic
Storeit has to communicate with that component. To obtain such result it requires the
interface called ISemanticStore.

In particular that interface is used to execlBPARQL queries created by the
Browsing&Querying componerfor extractng direct or infered relationships from the
store. Whenever such relationshipannot be aggregated with a single quehe
component will interrogate several times the store aggregating the many results obtained.
One additional advantage obtained by interacting with I®emanticStore is the
possibility to obtain a representation of the RDF graph compatible with the entity model
described in sectioh

WP21 Upper model and architecture O markos Consortium Page32of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

5.6.Frontend component

-/
ILicenseAssistantWebApp

HTTPHTML

3 <<webapp>>
7 Front-End <l
IBrowsing ISearching

V4

<<interface>>
<<rest>>
IFrontend

+ notifyMetadataChange(projects : List<SoftwareProject>) : void
+ notifyNewProjectReleases(projects : List<SoftwareProject>) : void

Figure 97 Frontend component

Frontend component aims to expose a-fisendly user interfacantended mainly for
software analysts and developel$e users can use the MARKOS Frontend to find
implementations of a particular APl by specifying some criteria such as name, type,
programming language, licence type, tags, etc.

The MARKOS Frontend also can help them decide which of the available
implementations are most appropriate for their use, by offering some features such as
tools to make an wdept analysis on whether a particular licence type is compatible with
the licences of the dependency libraries, -8e views to browse dependencies with
other libraries at package or class level. The Frontend also provides a mechanism to
leave comments on different open source projects.

5.6.1.Provided interfaces
IFrontend

IFrontend interface will be offered through REST interfaces. This interface is mainly
used by t he Repository component during
oDownstream notificationd interactions, t
releases and any changes that are detected in the project related metadata

5.6.2.Required interfaces

Frontendcomponent requires the following interfaces from other components:

WP21 Upper model and architecture O markos Consortium Page33of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

- IBrowsing From Browsing & Querying componen
interaction. The Frontend uses the IBrowsing interface to submit queries to the
repository to getall software etities (libraries, packages, components) fully or
partially implementingan API the user specifies.

- ISearching From Browsing & Querying compone
interaction. This interface is used by the Frontensuitumit queries to theepository
to search for entities by supplying some details like exact or approximate name, the
entity type (e.g. class, package), etc.

- ILicenséAssistantVebApp From License Assi stant c
|l i cencesd Iinteract i oceto ddlegatentheeadepd licanee s t
analysis operation to the licence assistant component.

S o

- ICrawler. Fr om Cr awl er component i n 06set Conf
interactions. This interface is used to interact with the Crawler component to
retrieve andet the crawling configuration properties.

5.7.Linked Data Access Point

The Linked Data Access Point provides to softwerels external to MARKOS an
access to the Semantic Stdmeconnect and share the MARKOS semantic knowledge on
thesemantioveh

The way thesemantic informationis provided is compliantto some standardised
publishing patternsuch as

- RDF& embedded in web application pagésis approach offers to the users the
capabilities to explore the information using a web browser;

- Automaically generated RDFontents; whenever the users ask for a linked data
resource the component is able to provide the related RDF fragment.

The main objective of this component is to extend the global semantic knowledge
publishing data, which refers toogjally accessible ontologies, in a standard format. In
this way, the users can use the MARKOS results to create and infer additional
information.

° RDFa is an enabling technology used to include structured data (i.e. RDF graphs) in HTML pages to augment
the visual information on the Web with machireadable hints.

WP21 Upper model and architecture O markos Consortium Page34 of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service

APIs (initial)
<<webapp>> g] r
LinkedData ¥
H1TP/ResrISemanticStore

Figure 107 Linked data access point component

5.7.1.Provided interfaces

The linked dat@womponent does not implement any API, yet it is able to interoperate via
HTTP with clients dereferencing URIs. If those clients support the content negdfiation
the component is able to retrieve specific resources or RDF fragments in the client
preferredrepresentation format; otherwise the results are retrieved in the default format,
likely RDF/XML.

5.7.2.Required interfaces

Since thelLinked Data Access Poirdtomponent has to retrieve information from the
Semantic Storeit has to communicate with that component. To obtain such result it
requires thenterface called ISemanticStore on which it can execute SPARQL queries to
retrieve fragments of the RDF graphs.

5.8. Annotation and Communication component

The "Annotation andCommunication" (A&C) component is used to annotate and
retrieve the properties and metadata of FLOSS components such as projects and software
entities considering selected elements of the MARKOS ontology. It enables the

®The content negotiationis a strategy formalised by W3C in the HTTP stamtjaenabling multiple
representation®f data onthe same URI. Usually the goal of such negotiation is to provide the best
representation the client can procdssthe case of the RDF it can result in several serialization formats,
such as: RDF/XML, HTML.

WP21 Upper model and architecture O markos Consortium Page35of 79

FP7<317743> < MARKOS > D2.1.1.a Specification of the MARKOS Architeotuand Service
APIs (initial)

communication and the exchange ofpesience respectively feedback between
MARKOS users.

Figure 1171 Annotations component

To retrieve information about the FLOSS projects and to link annotations to specific
entities it uses either the ISemanticStore interfacth@rinked data access point. The
design of this component is still in incubation, thus technical details will be elaborated in
the next sprints.

To enable communication between MARKOS users the component supports user
management and discussion threaderWsanagement is needed to identify other users
and their roles, especially managers of FLOSS projects and to give feedback to the
authors of annotations. Thus annotations are linked to projects and entities and assigned
to their author. Retrieval of anradtons and feedback is possible in discussion threads
based on selected projects, entities and users.

For the synchronization with the Frontend, the A&C component uses two interfaces,
namely IAC2FrontEnd and IFrontEnd2AC, which will be specified in dataihe next
version of the architecture as part of sprint 2. The interfaces are used to provide
information about the current context of a user, e.g. a specific project and to transfer
control between the MARKOS Frontend and the A&C component.

WP21 Upper model and architecture O markos Consortium Page36 of 79

